
The Scaly Book

The Scaly Book

Table of Contents
I. Introduction .. 1

1. The First Program ... 2
2. Hello World ... 3
3. Command line arguments .. 4
4. Code Blocks ... 5
5. Parallel Execution .. 6
6. Reference ... 7

6.1. Program files .. 7
6.2. Lexical structure ... 7

6.2.1. Whitespaces ... 7
6.2.2. Tokens .. 8
6.2.3. Literals ... 8
6.2.4. Punctuation and Keywords .. 9
6.2.5. Identifiers ... 9
6.2.6. Operator ... 10

6.3. The Program ... 10
6.4. Files ... 10
6.5. Statements ... 10
6.6. Expressions ... 10

6.6.1. Literal Values .. 10
6.6.2. Object expressions ... 11
6.6.3. Array literals .. 11
6.6.4. Declarations ... 11
6.6.5. Blocks and scopes ... 12
6.6.6. Function Expressions ... 12
6.6.7. Function calls ... 12
6.6.8. Operator Expressions ... 12
6.6.9. Operator Calls .. 12
6.6.10. Array Operators ... 13
6.6.11. Binding and Assignment Expressions ... 13
6.6.12. Function and Operator Declarations .. 13
6.6.13. External function declarations ... 13
6.6.14. Intrinsic function declarations ... 14

6.7. The Scaly Type System ... 14
6.7.1. The Void data type .. 14
6.7.2. Functions .. 14
6.7.3. Operators .. 14
6.7.4. Pointers .. 14
6.7.5. Integer types .. 15
6.7.6. Floating point types ... 15
6.7.7. The character type ... 15
6.7.8. The array type ... 15
6.7.9. The string type ... 16

6.8. The Scaly standard library ... 16
6.8.1. Boolean Values .. 16
6.8.2. Integral number types .. 16
6.8.3. Characters .. 16

iii

The Scaly Book

6.9. Grammar ... 16
6.9.1. Metagrammar ... 17
6.9.2. Scaly Grammar .. 18

6.10. Classes .. 25
6.11. Objects .. 25
6.12. Parents ... 26
6.13. Object Age .. 26

II. Design ... 29
7. Why Scaly? .. 30

7.1. Avoiding Data Races and Concurrency Problems ... 30
7.1.1. Functional Languages .. 31
7.1.2. Rust .. 31

7.2. Efficient Memory Management ... 32
7.2.1. ParaSail .. 33

7.3. Safety Against Program Failures ... 34
7.4. Conclusion .. 35

8. Memory Management .. 36
8.1. Regions ... 36
8.2. Pages ... 37
8.3. Root Page Allocation ... 38
8.4. Object Allocation .. 38
8.5. Extension pages .. 39
8.6. Exclusive pages .. 40
8.7. Oversized pages .. 40

iv

Part I. Introduction

Chapter 1. The First Program
The most basic expressions in Scaly are literals. A literal simply returns a value that is written literally
into a program. So our first program is not the famous Hello World version in Scaly (which comes
later because it is obligatory), instead we write up the shortest non-empty Scaly program imaginable:

0

Use your favorite text editor and type that lone zero digit into a file, give it a name like
shortest.scaly, and compile it to an executable. As you might expect, the program does exactly
nothing useful. Immediately after startup, it returns a 0 value to the operating system just to indicate
that everything went fine. If a program is to return 0 as the last action at the end of it, that 0 literal
can be omitted. That’s why the shortest Scaly program actually is the empty program which contains
nothing and does exactly the same as the above version - just returning 0. Try it by deleting the zero
digit, compiling and running the program.

There are also string literals like "Hello World!", the two bool literals true and false, and more.

2

Chapter 2. Hello World
Scaly comes with a standard library which among other stuff contains a function which prints a string
to the standard output (which is the output of your terminal, or a debug console, depending on the
environment in which your program was started into). The function has the name print and accepts
a string, returning nothing to the caller. We use it to write up the inevitable Hello World program in
Scaly:

print "Hello World!"

When you run that program you will notice that no line break is printed. The reason is that we did not
include one in our string literal, and the print function does not print a line break by itself. We correct
that by inserting a line break literally:

print "Hello World!
"

Scaly can contain all kinds of whitespace literally. If you don’t like to span string literals more than
one line for readability reasons or want more compact code, you can use an escape sequence as well:

print "Hello World!\n"

3

Chapter 3. Command line arguments
To return an int value (even an implict 0) is part of the calling convention for stand-alone programs:
Zero or more string arguments are passed to the program, and an integer value is returned which acts
as an error code which might be useful in extreme error situations if all other means of diagnosis like
logging or tracing fail because they do not work for some pathologic reason which can be indicated by
that error code.

The arguments passed to the program are bound to one parameter which is visible at the \ top code
level whose name is arguments. This parameter is an array of strings, and we can get its length field.
So our next Scaly program (not much useful either) returns the number of arguments passed at the
command line:

arguments.length

This expression actually consists of two parts: an item identified by the arguments identifier and the
access of its length field via the dot.

4

Chapter 4. Code Blocks
In all but the simplest programs, you structure your code using blocks. Like in commonplace
languages of C descent, a block starts with a left curly brace, followed by zero or more statements,
and ends with a right curly brace. An example:

{
 let a: int = 2
 let b: int = 3
 a + b
}

But there are important differences to C and friends:

First, code blocks are expressions - they may return a value. Because of this, if the last statement of a
code block is an expression, the value which is returned by that statement is the value which the code
block returns. Obviously, our example block returns an int whose value is 5, and therefore is a valid
Scaly program.

Second, the statements of a block can be executed in any order as far as data dependencies and the
pureness of called functions allow. That is the main selling point of Scaly - it automatically schedules
parallel and even distributed computation wherever possible.

5

Chapter 5. Parallel Execution
Not only statements in a block are executed in parallel, but also function arguments and operands, as
long they are pure and do not depend on earlier computations in the block.

A computation is called pure if it does not depend on anything else than its input parameters. (With
some care, even computations that obtain information from external input can be declared pure by you
if needed.)

That said, scheduling parallel computation comes at a cost - tasks have to be created and scheduled
for execution by a local worker thread pool, by a GPU, or even by a cluster of remote machines. In
the latter case, input data have to be serialized and sent via the network to the remote node, where the
data are deserialized. When the computation is done, its results have to be sent back. Last not least the
parallel work has to be synchronized.

Therefore, a Scaly implementation has to justify parallel execution at least by some heuristic
reasoning, better by profiling a set of reference computation workloads. Scheduling some single
floating point additions which might each take nanoseconds or less for parallel execution surely
isn’t worth the overhead. Parsing a multitude of source files in contrast can be expected to speed
up compiling a program, and performing heavy number crunching needed for fluid mechanics
calculations in parallel would a safe bet.

Adjusting the granularity of parallel execution, however, is beyond the Scaly language specification
which only states what computations can potentially be done in parallel, or to be exact, makes no
statement about the order in which independent computations are done.

6

Chapter 6. Reference
This chapter describes the Scaly Programming Language.

The Scaly Programming Language is defined by the structure and semantics of the statements which
can be used to write a Scaly Program.

On the lowest level, a Scaly program consists of a sequence of characters. The lexical structure of the
Scaly Programming Language describes how the characters of the program code are combined to form
a sequence of tokens and whitespaces.

The structure of the statements is defined by the grammar of the Scaly Programming Language.

The documentation you are reading sometimes refers to the reference implementation of the Scaly
Programming Language, but an alternative implementation can choose to do things in another
way, or to provide additional functionality like a command line playground which the reference
implementation does not have.

Particularly, the standard library which comes with the reference implementation is not part of
the Scaly Programming Language in a strict sense. Nevertheless, some elements like basic types,
operators, and functions of this standard library like basic types are used in the code samples that are
provided.

6.1. Program files
The reference implementation of the Scaly Programming Language, which the documentation you are
reading is part of, compiles a Scaly program into an LLVM assembly language [https://llvm.org/docs/
LangRef.html] module which can be processed further using the LLVM tools [https://llvm.org/docs/
CommandGuide/index.html].

A Scaly program consists of one or more files which contain the program code. The Scaly compiler
compiles a Scaly program to a piece of executable code. How this code can be executed depends on
the implementation of the Scaly compiler. A file is an object from which a Scaly compiler can read
a sequence of characters and parse them into statements. A file must contain zero or more complete
statements.

6.2. Lexical structure
On the lowest level, a Scaly program is made up of a sequence of characters which are read from
one or more files. For the Scaly Programming Language, some characters have a special meaning,
which means that they control the forming of the conversion of the character sequence into a sequence
of tokens and whitespaces. These tokens are then parsed into expressions which make up a Scaly
program or library.

6.2.1. Whitespaces
Whitespaces are sequences of characters which have no meaning by themselves, apart from being
used for separating tokens if no punctuation can be used.

7

https://llvm.org/docs/LangRef.html
https://llvm.org/docs/LangRef.html
https://llvm.org/docs/LangRef.html
https://llvm.org/docs/CommandGuide/index.html
https://llvm.org/docs/CommandGuide/index.html
https://llvm.org/docs/CommandGuide/index.html

Reference

Whitespace character sequences

Outside of comments or strings, the following characters form whitespace character sequences:

• space,

• tab,

• line break, and

• line feed.

Single line comments

Two forward slashes start a single line comment which spans all following characters up to and
including a line break.

// This is a single line comment.

Multiple line comments

A forward slash followed immediately by an asterisk starts a multiple line comment which spans all
following characters up to and including an asterisk and a forward slash immediately following.

/* This is a multi-line comment.
Continued comment text
The comment ends now:*/

Multiple line comments can be nested:

/* This comment is /*nested*/.*/

6.2.2. Tokens
Tokens form the building blocks of expressions. The syntactic grammar of the Scaly Programming
Language is expressed in terms of tokens. Tokens can be

• literals,

• punctuation,

• keywords, and

• identifiers.

6.2.3. Literals
Literals are used to write constant values directly into the program.

A numeric literal starts with a digit, followed by zero or more digits, optionally one decimal point,
optional fraction digits, an optional exponent consisting of the exponent character (E or e) and
exponent digits.

8

Reference

If the first two characters are 0x, the literal is a hexadecimal literal. The digits that may follow may
include the characters a, b, c, d, e, f, A, B, C, D, E, and F. No decimal point or exponent is allowed for
hexadecimal literals.

Some lexically valid numeric literals:

42
1.
0.22e4567
1E6
0xFB04
0x123abc

(A minus sign is not part of a number literal. It is typically implemented as a unary operator.)

String literals start with a double quote and end with a double quote:

"This is a string"

All white space characters can be directly embedded in strings:

"A string with a
line break"

Tabs, carriage returns, line feeds, and NUL characters can be escaped by a back slash and the
characters t, r, n, 0 respectively. The back slash escapes itself, and the double quote is escaped by a
back slash as well.

"A line feed\n, an \"escaped\" string, an escaped \\ backslash,
a \ttab, and a carriage \rreturn."

Character literals start with a single quote, continue with the character whose value is to be written,
and end with a single quote:

'a'
'0' // The zero digit character

The characters that can be escaped in string literals, and the single quote must be escaped in a
character literal.

'\"'
'\''
'\0' // The NUL character

6.2.4. Punctuation and Keywords
Punctuation characters are used (alongside keywords) for building the structure of expressions.

Keywords are used (alongside punctuation characters) for building the structure of expressions.

The complete list of punctuation characters and keywords is contained in the Grammar Reference.

6.2.5. Identifiers
All character combinations which are not white space, literals, punctuation, or keywords, are
identifiers. Some examples:

9

Reference

WindyShore
foo_bar
baz

Identifiers are used as names.

6.2.6. Operator
All combinations of operator characters are operators. The operator characters are +, -, *, /, =, %, &, |,
^, ~, <, and >. Some examples:

+
**
<
>>

Operators are used as names like identifiers.

6.3. The Program
The Scaly compiler processes a program which contains all code which is to be compiled in a single
compiler run to an executable program, a library, or code which is compiled just-in-time (JITted). A
program consists of zero or more files.

6.4. Files
A file is a single sequence of characters which contains zero or more characters which make up zero
or more complete statements.

6.5. Statements
A Scaly program consists of statements. Statements are the building blocks of a Scaly program.
A statement can perform computation work and either return the result of the computation to the
enclosing expression or bind it to an identifier which can be referred to in the current scope.

6.6. Expressions
An expression performs actual computation work and usually returns a value as a result of that work.
There are numerous forms of expressions in Scaly like literals, function calls, operations, and many
more.

Expressions can be optionally terminated by a semicolon. Line breaks are not significant for
expression termination.

6.6.1. Literal Values
The most basic expressions in Scaly are literal values. A literal value expression evaluates to the value
that is written literally into a program.

10

Reference

1.602E-19
"baz"
'a'

There is no such thing as a boolean literal as a part of the language. Boolean constants can be defined
by a runtime library.

6.6.2. Object expressions
An object expression is an expression which combines zero or more expressions, the so-called
components, to an object. An object is a combination of data which are used together.

() // The empty object which contains no components.
(42,"The Answer") // Contains the number 42 and a string
(()) // A non-empty object which contains the empty object as its only component.

An object consisting of a single component is semantially equivalent to the component contained by
that object:

(5) // => 5

The components of an object can be accessed by its index, starting with 1 at its first component. The
component index must be known at compile time, it cannot be computed.

(7).1 // => 7
(1, (2, (3, (4)))).2.2.2 // => 4

The components of an object can be given a name which can be used to access them:

(brand = "IFA", model = "F9", year = 1952).year // => 1952

6.6.3. Array literals
An array literal combines zero or more expressions of the same type:

[2, 3, 5, 7] // An array with four components

A component of an array can be accessed by appending brackets which contain the index. The index is
zero-based.

[1, 2][1] // => 2

6.6.4. Declarations
An declaration evaluates an expression and binds the value which was returned by that expression to a
constant or variable:

let a = 2
// b cannot be used here
let b = 3
a // 2
var c = b
b // 3

The constant or variable can be used in every expression which follows its declaration in the current
scope. A scope is either the global scope or the scope of a block.

11

Reference

6.6.5. Blocks and scopes
A block is an expression which combines zero or more expressions in a local scope. The last
expression of the block is returned.

{ 99 } // => 99

A scope gives a block a name:

scope A {
 let b = 2
}

From a scope, a constant can be used after the scope declaration.

A.b // => 2

6.6.6. Function Expressions
A function expression evaluates to a function value. It consists of the function keyword, an object
literal, and a block.

function (a) { a } // => function(a){a}

6.6.7. Function calls
A function (an expression which evaluates to a function) can be called by combining it with an object
to be used as an input to the function:

let getItself = function (a) { a };
getItself(2) // => 2

6.6.8. Operator Expressions
For the Scaly programming language, an operator is a function which receives two objects as input.
An operator expression consists of the operator keyword, two object literals, and a block.

operator (a) (b) { (a, b) } // => operator(a)(b){(a,b)}

Scaly knows no binary operator precedence, execution is left to right:

2 + 3 * 4 // => 20

Operator precedence can be done by putting binary operation into parentheses (which are technically
object expressions with one component which simply expose the containing operation after
evaluation):

2 + (3 * 4) // => 14

6.6.9. Operator Calls
An operator can be called by combining an object expression with the operator and a second object
expression. The following example declares the >< operator which combines two expressions to an
object:

12

Reference

let >< = operator (a) (b) { (a,b) }
2 >< 3 // => (2,3)

6.6.10. Array Operators
A special variant of the operator expression is one that combines an array literal with a block. It can
combine multiple operads using one operation call.

let with = operator [a] { (a[0], a[1], a[2], a[3]) }
1 with 2 with 3 with 4 with 5 // => (1,2,3,4,5)

The order of evaluation of the operator arguments is not specified.

6.6.11. Binding and Assignment Expressions
Binding expressions bind an expression to a pattern. A pattern is commonly an identifier expression
which is a name of the object to which the expression is bound. Binding expressions can be constant
(using let), variable (using mutable), or inferred (using var):

var a 2
var b 3
var c a + b
c // => 5

Writing an equals sign after let, mutable, or var is not required by the language, but since the standard
library provides the unary = operator, the binding expressions can use them. Together with optional
semicolons, the code might be more readable:

var a = 2;
var b = 3;
var c = a + b;
c // => 5

An object bound to a mutable name can be altered by setting it to a new value using the assignment
expression:

mutable d 6
set d d + 1
d // => 7

6.6.12. Function and Operator Declarations
Instead of declaring a function or using let, a shorter and more syntax can be used:

function getItself(a) { a }
operator >< (a)(b) { (a, b) }
operator with [a] { (a[0], a[1], a[2], a[3]) }

6.6.13. External function declarations
External functions are functions that are provided by the runtime environment. If external functions
are to be made accessible from a Scaly program, they must be declared using the following syntax:

external _fopen(filename: pointer, mode: pointer): pointer

13

Reference

external _fclose(file: pointer)

6.6.14. Intrinsic function declarations
Intrinsic functions are functions that are provided by the compiler infrastructure. They must be
declared using the following syntax:

intrinsic function llvm.sin.f64(value: double): double

6.7. The Scaly Type System
Types describe kinds of data which can be processed by a Scaly program. Most importantly, a type
determines which values a variable or constant can have, and the compiler chooses a representation
of the data on the hardware on which the code of a Scaly program runs. There are primitive data types
like the void object, functions, and operators, integral and floating point numbers, enumerations, bit
masks, characters, pointers,and complex data types like objects, arrays, and variants which combine
primitive data types.

6.7.1. The Void data type
The void data type has no value. It can be used as an object that has no data, and it can be written as
an empty object expression:

()

They are used as empty input or output of functions or operators or as an option of variant data types.

6.7.2. Functions
Functions are objects that contain executable code which can be called, and which receive one input
object (which can be void) and return one output object (which can be void as well). The type of a
function is uniquely identified by its signature, i.e., the types of its input and output. Two functions
which have the same signature are of the same type.

6.7.3. Operators
Operators are objects that contain executable code which can be called, and which receive two input
objects (which can be void) and return one output object (which can be void as well). The type of an
operator is uniquely identified by its signature, i.e., the types of its two input objects and its output
object. Two operators which have the same signature are of the same type.

6.7.4. Pointers
The pointer type represents an address in the address space of the machine. It can point to any
kind of data, and the type or semantics of the data are not defined. A pointer can be converted to
any data item without any runtime or compile time checks. The author of the code is responsible to
guarantee that any instance of a pointer which is used carrys a valid address, and that the pointer is
only converted to a constant or variable of the type of data which lives at that address.

14

Reference

Pointers should only be used when external functions are called by Scaly code or by Scaly functions
that are called from external code.

6.7.5. Integer types
The standard library which comes with a Scaly compiler may define integer types which are defined
by their bit width and the presence or absence of a sign. These types typically define type conversion
and other functions.

Numeric literals written into a Scaly program have no type by themselves. The type of the value that
is generated by the compiler is either inferred from the usage of the literal, and if that is not possible,
the smallest possible integer type is assumed if the literal is an integer.

6.7.6. Floating point types
The standard library which comes with a Scaly compiler may define floting point types which are
defined by their bit width. These types typically define type conversion and other functions.

Numeric literals written into a Scaly program which do not represent an integral number are given
a type that is inferred from the usage of that literal. If this is not possible, a floating point type is
assumed that the compiler sees fit for the runtime environment for which the compiler was provided.

6.7.7. The character type
The char type represents all possible character values which are possible for the runtime environment
for which the Scaly compiler is implemented. The Scaly Programming Language makes no
assumptions about the storage format of the character value.

The standard library which comes with a Scaly compiler may define utility functions for conversion
and other tasks.

6.7.8. The array type
An array is a sequence of objects of the same type in memory. The type of the array is defined by its
length and the type of the objects that are contained in the array.

An array can have either a fixed size if the length of the array is known at compile time, or a variable
size if the length of the array is not known at compile time.

In the latter case, the count of the objects is stored as a packed integer in front of the sequence of the
objects in memory.

The packed integer format stores stores a number to be encoded as a sequence of digits to the base of
127. Each digit is stored in one byte, the lowest digit coming first. The highest digit has its highest
bit set to 0 which signals the end of the sequence of digits of the number. The highest bit of the
lower digits is set to 1. The lower 7 bits of all bytes encode the value of the digit as an unsigned byte
number.

Thus, array lengths from 0 to 127 are encoded in just one byte, and lengths from 128 to 16128 are
encoded in two bytes, lengths from 16128 to about 2 millions take three bytes and so on.

15

Reference

6.7.9. The string type
The string type is technically an array of bytes. This means that the length of the string which is
stored along with the bytes is the length of the byte sequence which represents the string and not
the count of characters which the string contains. The difference to a byte array is the fact that the
runtime library can interpret the stored byte sequence as a stream of characters and, based on that
interpretation, can implement string access and manipulation functionality.

String constants in memory are stored in the UTF-8 [https://en.wikipedia.org/wiki/UTF-8] format.

6.8. The Scaly standard library
This section describes the types of the standard library that comes with the reference implementation
of the Scaly Programming Language. You can use the Scaly Programming Language without the
standard library, and provide your own basic types.

6.8.1. Boolean Values
There is one boolean value type, bool. It can have two values, false and true.

6.8.2. Integral number types
An integral number type is determined by the range of integral numbers which the number can
take on. Scaly defines a set of integral number types which are characterized by their bit width, and
whether they carry a sign or not:

• byte and sbyte (8 bits unsigned and signed)

• short and ushort (16 bits signed and unsigned)

• int and uint (32 bits signed and unsigned)

• long and ulong (64 bits signed and unsigned)

6.8.3. Characters
The char type represents exactly one character. A character is uniquely identified by its code point
which is a non-negative integral number. Which code points are valid and the semantics of the
individual characters are determined by the character set used by the operating system and/or the
runtime library.

6.9. Grammar
The grammar of the expressions of the Scaly Programming Language is defined as an SGML [https://
en.wikipedia.org/wiki/Standard_Generalized_Markup_Language] document.

The reference implementation of the Scaly Programming Language actually generates its complete
parser and all AST classes directly out of the grammar description given in the follwoing sections.

16

https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/Standard_Generalized_Markup_Language
https://en.wikipedia.org/wiki/Standard_Generalized_Markup_Language
https://en.wikipedia.org/wiki/Standard_Generalized_Markup_Language

Reference

6.9.1. Metagrammar
Since SGML itself is a meta-language, the language in which the grammar is formulated is expressed
as the following SGML DTD which is explained below:

<!ELEMENT grammar - - (syntax+, keyword*, punctuation*)>

<!ELEMENT syntax - O (content)*>
<!ATTLIST syntax
 id ID #REQUIRED
 abstract (abstract|concrete) concrete
 base IDREF #IMPLIED
 multiple (multiple|single) single
 top (top|nontop) nontop
 program (program|nonprogram) nonprogram
>

<!ELEMENT content - O EMPTY>
<!ATTLIST content
 type (syntax|keyword|punctuation|identifier|literal|eof) syntax
 link IDREF #IMPLIED
 property CDATA #IMPLIED
 multiple (multiple|single) single
 optional (optional|required) required
>

<!ELEMENT keyword - O EMPTY>
<!ATTLIST keyword
 id ID #REQUIRED
>

<!ELEMENT punctuation - O EMPTY>
<!ATTLIST punctuation
 id ID #REQUIRED
 value CDATA #REQUIRED
>

A grammar contains at least one syntax rule, zero or more keyword elementss, and zero or more
punctuation elements.

A syntax contains zero or more content elements.

A syntax rule can be abstract or concrete, with concrete as the default. An abstract syntax
rule is a superset of other syntax rules. An example for an abstract syntax is an Expression. As a
convention, an abstract syntax contains only links to other syntax rules which indicate what the syntax
can be. An Expression, for instance, can be a SimpleExpression (being abstract itself), or a Block
(which is concrete), or one of a number of other expressions.

A concrete syntax rule contains content elements which describe the contents of that syntax. A Block,
for instance, contains a leftCurly punctuation, multiple Expression elements, and a rightCurly
punctuation. Other content can be an identifier, a keyword, a literal, or an eof (the latter one
signals the end of the file.)

A concrete syntax rule which is an instance of an abstract syntax rule, needs to indicate its base
syntax rule.

The top-level syntax rule of a module needs the top attribute.

17

Reference

The root syntax rule of the grammar needs the program attribute.

A content item can link to a syntax, keyword, or punctuation element. The property attribute
is the name of the syntax member variable name in the AST. If a content links to a syntax, the
multiple attribute indicates that this syntax can occur multiple times in that context, and the
optional attribute indicates that this syntax is optional in that context.

The keyword has its value as its id.

The punctuation has its value in the value attribute.

6.9.2. Scaly Grammar
Below the grammar of the Scaly programming language is defined in terms of the meta grammar
given in the previous section. Please note that a character sequence complying to the grammar is not
necessarily a valid Scaly program. All valid Scaly programs, howver, comply with this grammar. The
semantic requirements for the expressions to form a valid Scaly program are described in the Program
section and the sections that follow.

<!DOCTYPE grammar SYSTEM "grammar.dtd">

<grammar>

<syntax id = Program program
 <content identifier property = name
 <content link = File multiple property = files

<syntax id = File top
 <content link = Segment multiple optional property = statements

<syntax id = Segment multiple
 <content link = Statement property = Step
 <content link = semicolon optional

<syntax id = Block base = PrimaryExpression
 <content link = leftCurly
 <content link = Statement multiple property = statements
 <content link = rightCurly

<syntax id = Statement multiple abstract
 <content link = Using
 <content link = Declaration
 <content link = Expression
 <content link = Set
 <content link = Break
 <content link = Continue
 <content link = Return
 <content link = Throw

<syntax id = Using base = Statement
 <content link = using
 <content link = Path property = path

<syntax id = Declaration multiple abstract base = Statement
 <content link = Let
 <content link = Mutable
 <content link = Var
 <content link = Thread

18

Reference

 <content link = Class
 <content link = Constructor
 <content link = Method
 <content link = Function

<syntax id = Let base = Declaration
 <content link = let
 <content link = Binding property = binding

<syntax id = Mutable base = Declaration
 <content link = mutable
 <content link = Binding property = binding

<syntax id = Var base = Declaration
 <content link = var
 <content link = Binding property = binding

<syntax id = Thread base = Declaration
 <content link = thread
 <content link = Binding property = binding

<syntax id = Binding
 <content link = Pattern property = pattern
 <content link = TypeAnnotation optional property = typeAnnotation
 <content link = Expression multiple property = expressions

<syntax id = Pattern abstract
 <content link = WildcardPattern
 <content link = IdentifierPattern
 <content link = ExpressionPattern

<syntax id = IdentifierPattern base = Pattern
 <content link = Path property = path
 <content link = TypeAnnotation optional property = annotationForType

<syntax id = WildcardPattern base = Pattern
 <content link = underscore

<syntax id = ExpressionPattern base = Pattern
 <content link = Expression property = expression

<syntax id = Expression multiple base = Statement
 <content link = PrimaryExpression property = primary
 <content link = Postfix multiple optional property = postfixes

<syntax id = PrimaryExpression multiple abstract
 <content link = Name
 <content link = Constant
 <content link = If
 <content link = Switch
 <content link = For
 <content link = While
 <content link = Do
 <content link = This
 <content link = ObjectExpression
 <content link = Block
 <content link = SizeOf

<syntax id = Name base = PrimaryExpression
 <content link = Path property = path
 <content link = GenericArguments optional property = generics
 <content link = LifeTime optional property = lifeTime

19

Reference

<syntax id = Constant base = PrimaryExpression
 <content literal property = literal

<syntax id = If base = PrimaryExpression
 <content link = if
 <content link = leftParen
 <content link = Expression multiple property = condition
 <content link = rightParen
 <content link = Block property = consequent
 <content link = Else optional property = elseClause

<syntax id = Else
 <content link = else
 <content link = Block property = alternative

<syntax id = Switch base = PrimaryExpression
 <content link = switch
 <content link = leftParen
 <content link = Expression multiple property = condition
 <content link = rightParen
 <content link = leftCurly
 <content link = SwitchCase multiple property = cases
 <content link = rightCurly

<syntax id = SwitchCase multiple
 <content link = CaseLabel property = label
 <content link = Block property = content

<syntax id = CaseLabel abstract
 <content link = ItemCaseLabel
 <content link = DefaultCaseLabel

<syntax id = ItemCaseLabel base = CaseLabel
 <content link = case
 <content link = Pattern property = pattern
 <content link = CaseItem multiple optional property = additionalPatterns

<syntax id = DefaultCaseLabel base = CaseLabel
 <content link = default

<syntax id = CaseItem multiple
 <content link = comma
 <content link = Pattern property = pattern

<syntax id = For base = PrimaryExpression
 <content link = for
 <content link = leftParen
 <content identifier property = index
 <content link = TypeAnnotation optional property = typeAnnotation
 <content link = in
 <content link = Expression multiple property = expression
 <content link = rightParen
 <content link = Block property = code

<syntax id = While base = PrimaryExpression
 <content link = while
 <content link = leftParen
 <content link = Expression multiple property = condition
 <content link = rightParen
 <content link = Block property = code

<syntax id = Do base = PrimaryExpression

20

Reference

 <content link = do
 <content link = Block property = code
 <content link = while
 <content link = leftParen
 <content link = Expression multiple property = condition
 <content link = rightParen

<syntax id = This base = PrimaryExpression
 <content link = this

<syntax id = Postfix multiple abstract
 <content link = Catch
 <content link = MemberAccess
 <content link = Subscript
 <content link = As
 <content link = Is
 <content link = Unwrap

<syntax id = Catch base = Postfix
 <content link = catch
 <content link = CatchPattern property = typeSpec
 <content link = Expression optional property = handler

<syntax id = CatchPattern abstract
 <content link = WildCardCatchPattern
 <content link = NameCatchPattern

<syntax id = WildCardCatchPattern base = CatchPattern
 <content link = WildcardPattern property = pattern

<syntax id = NameCatchPattern base = CatchPattern
 <content link = Name optional property = member
 <content link = leftParen
 <content identifier optional property = errorName
 <content link = rightParen

<syntax id = MemberAccess base = Postfix
 <content link = dot
 <content identifier property = member

<syntax id = Subscript base = Postfix
 <content link = leftBracket
 <content link = Expression multiple optional property = firstItems
 <content link = ObjectItem multiple optional property = additionalItemses
 <content link = rightBracket

<syntax id = As base = Postfix
 <content link = as
 <content link = Type property = typeSpec

<syntax id = Is base = Postfix
 <content link = is
 <content link = Type property = typeSpec

<syntax id = Unwrap base = Postfix
 <content link = exclamation

<syntax id = ObjectExpression base = PrimaryExpression
 <content link = leftParen
 <content link = Expression multiple optional property = firstItems
 <content link = ObjectItem multiple optional property = additionalItemses
 <content link = rightParen

21

Reference

<syntax id = ObjectItem multiple
 <content link = comma
 <content link = Expression multiple optional property = expression

<syntax id = SizeOf base = PrimaryExpression
 <content link = sizeof
 <content link = Type property = typeSpec

<syntax id = Set base = Statement
 <content link = set
 <content link = Expression multiple property = lValue
 <content link = colon
 <content link = Expression multiple property = rValue

<syntax id = Break base = Statement
 <content link = break
 <content link = Expression multiple property = lValue

<syntax id = Continue base = Statement
 <content link = continue

<syntax id = Return base = Statement
 <content link = return
 <content link = Expression multiple property = expression

<syntax id = Throw base = Statement
 <content link = throw
 <content link = Expression multiple property = expression

<syntax id = Class base = Declaration
 <content link = class
 <content link = Path property = path
 <content link = GenericParameters optional property = generics
 <content link = Object optional property = contents
 <content link = Extends optional property = baseClass
 <content link = Expression optional property = body

<syntax id = Path
 <content identifier property = name
 <content link = Extension multiple optional property = extensions

<syntax id = Extension multiple
 <content link = dot
 <content identifier property = name

<syntax id = GenericParameters
 <content link = leftBracket
 <content identifier property = name
 <content link = GenericParameter multiple optional property = additionalGenerics
 <content link = rightBracket

<syntax id = GenericParameter multiple
 <content link = comma
 <content identifier property = name

<syntax id = Extends
 <content link = extends
 <content link = Path property = path

<syntax id = Object
 <content link = leftParen
 <content link = Component multiple optional property = components

22

Reference

 <content link = rightParen

<syntax id = Component multiple
 <content identifier property = name
 <content link = TypeAnnotation optional property = typeAnnotation
 <content link = comma optional

<syntax id = Constructor base = Declaration
 <content link = constructor
 <content link = Object optional property = input
 <content link = Block property = body

<syntax id = Method base = Declaration
 <content link = method
 <content link = Procedure property = procedure

<syntax id = Function base = Declaration
 <content link = function
 <content link = Procedure property = procedure

<syntax id = Procedure
 <content identifier property = name
 <content link = Object optional property = input
 <content link = TypeAnnotation optional property = output
 <content link = Throws optional property = throwsClause
 <content link = Block property = body

<syntax id = TypeAnnotation
 <content link = colon
 <content link = Type property = typeSpec

<syntax id = Type
 <content identifier property = name
 <content link = GenericArguments optional property = generics
 <content link = TypePostfix multiple optional property = postfixes
 <content link = LifeTime optional property = lifeTime

<syntax id = Throws
 <content link = throws
 <content link = Type property = throwsType

<syntax id = GenericArguments
 <content link = leftBracket
 <content link = Type property = typeSpec
 <content link = GenericArgument multiple optional property = additionalGenerics
 <content link = rightBracket

<syntax id = GenericArgument multiple
 <content link = comma
 <content link = Type property = typeSpec

<syntax id = TypePostfix multiple abstract
 <content link = Optional
 <content link = IndexedType

<syntax id = Optional base = TypePostfix
 <content link = question

<syntax id = IndexedType base = TypePostfix
 <content link = leftBracket
 <content link = Type optional property = typeSpec
 <content link = rightBracket

23

Reference

<syntax id = LifeTime abstract
 <content link = Root
 <content link = Local
 <content link = Reference
 <content link = Thrown

<syntax id = Root base = LifeTime
 <content link = dollar

<syntax id = Local base = LifeTime
 <content link = at
 <content identifier property = location

<syntax id = Reference base = LifeTime
 <content link = backtick
 <content literal optional property = age

<syntax id = Thrown base = LifeTime
 <content link = hash

<keyword id = using
<keyword id = let
<keyword id = mutable
<keyword id = var
<keyword id = thread
<keyword id = set
<keyword id = class
<keyword id = extends
<keyword id = constructor
<keyword id = method
<keyword id = function
<keyword id = this
<keyword id = sizeof
<keyword id = catch
<keyword id = throws
<keyword id = as
<keyword id = is
<keyword id = if
<keyword id = else
<keyword id = switch
<keyword id = case
<keyword id = default
<keyword id = for
<keyword id = in
<keyword id = while
<keyword id = do
<keyword id = break
<keyword id = continue
<keyword id = return
<keyword id = throw

<punctuation id = semicolon value = ";"
<punctuation id = leftCurly value = "{"
<punctuation id = rightCurly value = "}"
<punctuation id = leftParen value = "("
<punctuation id = rightParen value = ")"
<punctuation id = leftBracket value = "["
<punctuation id = rightBracket value = "]"
<punctuation id = dot value = "."
<punctuation id = comma value = ","
<punctuation id = colon value = ":"

24

Reference

<punctuation id = question value = "?"
<punctuation id = exclamation value = "!"
<punctuation id = at value = "@"
<punctuation id = hash value = "#"
<punctuation id = dollar value = "$"
<punctuation id = underscore value = "_"
<punctuation id = backtick value = "`"

</grammar>

6.10. Classes
Classes are a way of organizing data. Classes can have members — either primitive ones like strings
or numbers, or other classes, or arrays of them.

Immutable object items — either declared locally, object members or elements of an array or
dictionary — can be assigned to either other immutable objects or fresh objects created with new.

Mutable object items (local, members or elements) cannot be assigned to other existing objects. They
can only be assigned to fresh objects created with new.

In addition to the simple assignment operator =, there is also a movement operator =! which moves
the object from the right hand side expression (which must be mutable, and optional) to the left hand
item which must be mutable or variable either.

There is also a swap operator <=> which swaps the left hand item with the right hand item. For
swapping, the items must both be mutable.

Object arguments are passed by reference to a function. If you pass a mutable object to a function, and
the function alters that object, the changes are visible to the caller after the function returned.

Classes have an important characteristic: they are self-contained data sets which means that members
of an object cannot point to anything outside the object tree, and an object cannot be pointed to by
anything else but the owner (if it is a class member or an array element).

Since mutable objects cannot be assigned to, classes organize their data in a strictly hierarchical
way. They can be easily serialized to JSON, XML, or any other text-based or binary hierarchical
representation of the data they contain. Since classes are serializable, their data can be transmitted
over the network to other nodes if your program runs on a supercomputer, or sent to powerful GPU
hardware on your local machine. Thus, programs using classes for passing data scale well in a
distributed or heterogeneous environment.

Because classes are so easily mapped to JSON or XML, building web services with Scaly is a breeze -
simply design a set of functions using classes for data transfer, and you are done.

6.11. Objects
An object is created by calling a constructor of its class. A constructor returns a new object. This
object can then be assigned to an item:

mutable p: Foo = new Foo(42)

25

Reference

An object can be declared mutable or immutable. An immutable item is declared with the let
keyword. Neither the object it references can be changed, nor the item itself:

let i: Foo = new Foo(43)
// i.bar = 44 // The object cannot be changed
// i = new Foo(44) // The item cannot be reassigned

A mutable object is declared with the mutable keyword. A mutable item allows for changing the
object to which its reference points, and for reassigning another reference to it:

mutable m: Foo = Foo(45)
m.bar = 46 // The object can be changed
m = Foo(47) // The item can be reassigned

You can copy an immutable object by assigning it to another immutable object.

let a: Foo = i
let b: Foo = v
v = i

6.12. Parents
A class can define exactly one parent member. A parent member is recognized by an @ at its type
declaration:

class Parent {
 let children: Child[]
}

class Child {
 let parent: Parent@
}

If you assign an object with a parent member to a member of a object to contain it, this parent member
is automatically set to the containing object. If the child is added to an array member, the parent
member of the child points to the object which contains that array member:

mutable p: Parent = new Parent()
p.Children.push(new Child()) // The parent property of the new Child points to p

A parent member is useful if your algorithm walks a tree up and down, or to implement doubly-linked
lists.

A parent members can only be accessed if the object holding it is immutable:

if p.length() > 0 {
 let c: Child = p.children[0]
 // let r = c.parent // Error: Can't access a parent of a mutable object
}

6.13. Object Age
In Scaly, objects live on the stack, either defined as local items, or owned by or referenced by other
objects, arrays, or dictionaries, which in turn live somewhere on the stack directly or indirectly (held
by other objects).

26

Reference

If a block is left, the memory of all objects which were created in this block is recycled. Therefore, a
reference must not be held by an item that outlives the object it references:

let a: Foo&
{
 let b: Foo = Foo()
 // a = &b // If b goes out of scope, a would point to recycled memory
}

To make b assignable to a, its declaration can be moved to the outer block:

let a: Foo&
let b: Foo
{
 b = Foo()
 a = &b
}

The lifetime of an object is determined by the place where a reference to it is declared. The older an
object, the longer it lives. Since older data live at least as long as younger data, it can never happen
that references to dead data are accessible.

The age of data depends on where it is declared. Items declared in a local block are younger than
items in the enclosing block. Parameters that are passed to a function are older than its local items:

function f(a: Foo) {
 let b: Bar = Bar()
 {
 let c: Caf = Caf()
 }
}

In this example, a is oldest, b is younger than a, and c is youngest.

A reference returned by a function is assumed to be fresh by default. This means that the function
creates the object (either by calling an object constructor or another function which returns a reference
to a fresh object). The caller of such a function then assigns the returned reference to an item whose
location determines the age of the object:

function g(): Foo {
 return Foo(42) // Fresh object created and returned
}

function h() {
 let k: Foo = g() // The object lives here, accessible via k
}

If a function is to return an object which is not fresh, the age of such a returned object must be made
explicit by an age tag which is written after the type of the return value.

An age tag starts with a single quote (&) and continues with digits which form a nonnegative number.
Leading zero digits are not allowed. &0 is a valid age tag, &42 is a valid age tag as well, whereas &01 is
not a valid age tag.

Since Scaly does not know global mutable data, there must be one or more parameters from which to
take the returned reference in some way, age tag numbers are used to express age relations between
the parameters of a function. The higher the age tag value is, the younger is the tagged reference:

27

Reference

function superiorFoo(fooOld: Foo&1, fooYoung: Foo&2) -> Foo&2 {
 if fooOld.number > fooYoung
 fooOld
 else
 fooYoung
}

In this example, the returned refrerence can be taken from any of the two parameters, and so its age
must be that of the youngest parameter.

The following example checks assignments for age validity:

function bar(mutable foo: Foo&1, mutable bar: Bar&2) {
 bar.foo = foo // Valid because foo is declared older
 // foo.bar = bar // Invalid because bar is younger
}

If age tags are omitted, the age of the parameters is irrelevant:

function baz(p: Foo, q: Foo) -> bool {
 p.number > q
}

The age of a member is assumed to be the same as the age of the object containing it (even though the
object it points to might be older). Similarly, the age of an array element is assumed to be that of the
array, and the age of a dictionary key or value is assumed to be that of the dictionary.

28

Part II. Design

Chapter 7. Why Scaly?
It’s a bit hard these days to justify developing a new programming language. And yet, there seems
to be a sweet spot for Scaly which wants to be a unique language - a language which enables you to
easily develop programs which run in parallel in a heterogeneous and distributed environment with
outstanding performance.

In the following, the main design points of Scaly are explained and how Scaly compares to existing
programming languages.

If we consider where processor development has gone in the last ten years, we see that the
performance of a single processor core had not increased as it used to in the decades before. Instead,
the progress made in semiconductor industry was used to increase the number of cores we find in
processors used in servers, workstations, laptops, tablets and even smartphones.

Today’s most popular programming languages, however, descend from the C programming language
which was not designed from the start with parallel and distributed computing in mind. Even though
some of these languages have mitigated some problems which plagued legions of C and C++
programmers, they do not support you by design in writing programs which are free of concurrency
bugs.

7.1. Avoiding Data Races and
Concurrency Problems

One big problem is that these languages permit code which accesses writable data from more than one
thread at the same time. Such code frequently suffers from data races. A data race causes your code to
depend on timing.

Often, bugs of this kind are likely to reveal themselves not before your code runs in production at your
customer’s site or at a server in the cloud runnning your customer’s web app. And to make things
worse, the failures are typically unable to be reproduced in your development environment. That’s
why you did not find these bugs in the first place while developing and testing your code. And even if
you are able to reproduce the problem, you might not be able to find the reason by stepping through
your code or even by tracing, because data races depend on timing - and the timing of code execution
typically is different while debugging code, or when writing trace records.

The only way to get rid of data races is to avoid accessing writable data from more than one thread at
the same time. There are two things that can be done about that:

1. Synchronize accesses to writable data

2. Forbid making writable data accessible for more then one thread

Without going into much detail, it can be said that trying to synchronize accesses to writable data
can lead to all kinds of locking problems - deadlocks cause two or more of your threads to wait
forever, making them fail to succeed in their computation, livelocks make your threads burn your
valuable CPU time without making any progress. As with data races, these failures are hard to find, to
reproduce and to debug.

30

Why Scaly?

Even in the absence of these problems, locking in general is an impediment to performance because it
lets your threads wait frequently for locks held by other threads to be released.

A better way is the second - never making writable data accessible to more than one thread. There are
two ways to acheiving that goal:

1. Make all data immutable

2. Do not share mutable data among threads

7.1.1. Functional Languages

Programming languages which know only immutable data have been known for decades. Pure
functional languages like Haskell [https://www.haskell.org/] do not offer a way to alter (or to mutate)
a datum after it has been created.

The price paid for this is pretty high, though. With a pure functional language, you cannot use many
coding patterns which are commonplace in the most popular programming languages like variables
which can be re-assigned or explicit loops. Your data must be read-only. Loops have to carefully be
transformed into recursions (only to end up as loops again on machine code level). Performing even
simple I/O tasks requires advanced concepts like monades. This might be the reason why this kind of
programming language never gained top popularity.

Two languages, Rust [http://rust-lang.org] and ParaSail [http://parasail-lang.org] have recently
emerged which choose the second option - they allow you to use mutable data but ensure that mutable
data cannot be accessed by more than one thread at the same time.

7.1.2. Rust

The Rust programming language [http://rust-lang.org], sponsored by the Mozilla foundation, avoids
sharing mutable data by using the concept of ownership and borrowing. This concept, after some time
needed getting used to it while fighting the borrow checker, works perfectly with data which live on
the stack.

There are many problems, however, which are hard to solve relying on data which directly live on
the stack alone. Try to write a a compiler that way, for instance. When it comes to more complex
data structures like growable trees or directed graphs in general, it turns out that this concept is of
limited use. Nodes in such structures typically cannot live on the stack directly. Instead, they have
to expressed with helpers like Box, Cell, or RefCell which hold them. These either forbid using the
data they hold from more than one location, or make use of hidden sychronization mechanisms which
might hamper performance by locking contention.

And what’s more, the Rust standard library allocates objects which cannot live on the stack
dynamically allocated from a heap. This in turn means that a mechanism is needed to release the
memory they use them when they are no longer needed. All of the mechanisms employed eventually
use the underlying allocation library to free each object individually. Since big data structures usually
are disposed as a whole, there is no need for de-allocating each and every node of the structure
individually. Here, Scaly can do much better, as we will see now.

31

https://www.haskell.org/
https://www.haskell.org/
http://rust-lang.org
http://rust-lang.org
http://parasail-lang.org
http://parasail-lang.org
http://rust-lang.org
http://rust-lang.org

Why Scaly?

7.2. Efficient Memory Management
All programming languages enjoying top popularity solve the problem of recycling the memory of
objects which are no longer used in one three ways:

1. You are required to release the memory of heap-allocated objects by writing explicit code.

2. You are offered to use reference counting

3. The objects are garbage-collected when they are no longer used.

The first option is the one used traditionally by C (free) and C++ (delete) and leads notoriously to
problems like memory leaks (if you forget to release the memory of your objects when they are no
longer used), or worse, memory corruptions (if you release their memory too soon). Especially the
latter problem is likely to go undetected until your code is deployed at your customer or at your cloud
provider and crash the process which runs your code.

Many programs written in C++ in a modern programming style, or programs written in Rust or Swift
[https://developer.apple.com/swift/] make use of the second option. Each object is accompanied by
a counter keeping track of the number of references to that object, and if the counter reaches 0, the
object is de-allocated. (unique_ptr in C++ and Box in Rust could be interpreted as a special case
where only one reference is possible.)

Apart from the overhead which is caused by the reference counter which is needed for every shared
object, and the fact that special measures need to be taken for getting rid of objects which take part in
reference cycles, it is simply inefficient to release each and every object taking part in a data structure
which is disposed individually.

That is why the third option, garbage collection, is used by many popular programming languages
like Java, C#, and JavaScript. Garbage collection works in the background, detecting objects which
are no longer accessible and recycling their memory. All the problems and difficulties with the first
two approaches are solved. And, since allocation is typically implemented by essentially advancing
a pointer to a heap location, allocating an object is rather fast compared to traditional heap allocation
methods which at first have to find a suitable memory location for the object.

Unfortunately, garbage collection introduces two major problems:

1. When a garbage collection occurs, one or more threads are halted once or multiple times until
the garbage collection is over. Since garbage collections can take many milliseconds, the
responsiveness of your app can be impaired. Garbage collection times of many seconds have been
reported.

2. Through a garbage gollection, all objects are traversed for accessibility checks, and heaps need
to be compacted to avoid fragmentation which involves shifting surviving objects. This way of
churning the whole data (at least that of the youngest generation) defeats caching.

The bad thing about these two phenomena is that they are not visible when dealing with small
amounts of data which entirely fit in first or second level caches, and whose data can be garbage-
collected in less than a few milliseconds.

Then, when you have bought into the promise of getting memory management for free, you scale up
your code into serving hundreds of users simutaneously, allocating gigabytes per second, growing the

32

https://developer.apple.com/swift/
https://developer.apple.com/swift/

Why Scaly?

heaps of your process way beyond the size of your caches - then you run into the problems described
above.

If you are lucky, your customer is ready to buy more server machines, or your cloud business
cashflow allows for throwing in more expensive EC2 instances behind your load balancer (hampering
your or your customer’s profit).

If the problems, however, occur on some backbone service, or if the end-users of your code are online
gamers which are annoyed by latencies of a few hundred milliseconds, throwing in more Intel power
does not help, and the business which is backed by your code is in trouble.

Fortunately, garbage collection is not the last word here. Scaly uses region-based memory
management [https://en.wikipedia.org/wiki/Region-based_memory_management] which avoids all
problems of the memory management strategies described above.

The idea of region-based memory managenent is not new, and related concepts, known as memory
pools or arenas are used, for instance by the Apache web server. The Rust standard library offers
Arena and TypedArena which you can use. On deletion, however, the whole arena is traversed in
order to call drop on objects which implement the Drop trait. As with a garbage collection, this might
defeat caching. Apart from that, arenas are still an unstable feature of Rust’s standard library, and
whether they will enter the stable state or will be dropped remains to be seen.

Few languages are known where region-based memory management is an integral part of the design
and works for you behind the scenes. The Cyclone [https://cyclone.thelanguage.org/] programming
language (which is no longer supported) makes use of it, and, very recently, ParaSail.

7.2.1. ParaSail
The ParaSail [http://parasail-lang.org] is a new program language using region based memory
memory management, and, in fact, its objectives match most of Scaly’s features.

Departing from the traditional patterns comes at a price - and that price, of course, depends on the
way you go. Opting for Haskell, as an example, requires abandoning many programming patterns
commonly used in mainstream programming languages, and leaning new ways of programming like
using recursions and monads. That price is fairly high, and the popularity of Haskell is still far behind
that of the mainstream languages. According to Google Trends, it actually stalled in the last years and
is now challenged by Rust’s rapidly growing popularity.

ParaSail, instead, takes another approach to safe parallel programming. When programming in
ParaSail, you can keep an imperative programming style. The price you pay for migrating from a
language like Java or C# is essentially the following:

1. You cannot use global data.

2. No pointers or references can be used, they are replaced by expandable objects.

3. You cannot use run-time exceptions.

ParaSail shares the avoidance of traditional run-time exceptions with Scaly, so we can focus on the
first two points.

First, ParaSail does not allow global data. All data must be passed as parameters to your function.

33

https://en.wikipedia.org/wiki/Region-based_memory_management
https://en.wikipedia.org/wiki/Region-based_memory_management
https://en.wikipedia.org/wiki/Region-based_memory_management
https://cyclone.thelanguage.org/
https://cyclone.thelanguage.org/
http://parasail-lang.org
http://parasail-lang.org

Why Scaly?

Scaly allows global data as long as they are immutable. As an example, program configuration data,
command-line arguments, or user context information during a web request can be offered for read-
only access. If these data are accessible as immutable global data, they do not have to be passed with
the help of parameters to your function.

Second, since ParaSail does not allow you to use explicit references, only strictly hierarchcal data can
be expressed directly, as is the case with Scaly’s structures. For using graphs in ParaSail, you have to
make use of ParaSail’s generalized indexing facility. This effectively requires you to implement your
graphs on top of numerically indexed arrays, and to manage orphaned graph nodes manually - which
does not support you avoiding memory leaks.

In Scaly, in addition to structures you can use classes which are accessed through references. You can
build up a mutable graph (your code will not fork in that phase, continuing to be executed by a single
thread in respect to that graph), return it as immutable, and then using it from multiple tasks.

As an example, if you build a compiler, your code could parse hundreds of source code files, working
in parrallel with multiple tasks on them using mutable classes for building up abstract syntax trees
(AST) of the files. Then, the parse trees are bundled to a single immutable AST of the whole program.
Then you would perform semantic analysis which could scale up by forking tasks, because the AST
data are immutable now. (In fact, the reference implementation of the Scaly programming language is
designed that way.)

The bottom line is, with Scaly you do not have to sacrifice programming with references like with
ParaSail when you write code targeting a multithreaded environment.

When it comes to heterogeneous and distributed environments, however, things are different. Data
have to be serialized and transmitted to a GPU or to peer nodes in a cluster or supercomputer. Scaly’s
classes and references are no help here, because Scaly’s class objects cannot be serialized. But
you can still use Scaly’s structure objects then which scale well in a heterogeneous or distributed
environment.

7.3. Safety Against Program Failures
When you write code in Scaly, you can be sure that your program will not suddenly terminate because
of a fatal error which makes continuing impossible. There are only three conditions which cause your
code to stop executing:

1. The hardware, the operating system, or unsafe code crashes your process.

2. Your program runs out of memory.

3. Your program causes a stack overflow.

As long as your program lives in a healthy environment, does not call buggy unsafe code, is able to
allocate memory and does not exhaust stack space, Scaly guarantees that your program will never stop
working unexpectedly. That is a huge advantage over most mainstream programming languages!

C and C++ allow your program bugs to crash your process. C++, Java, C#, JavaScript, and Python
programs are terminated if their code fails to catch an exception. Even a program written in a language
as new as Rust can panic, i.e., stop working because of a run-time error.

34

Why Scaly?

Scaly does not know exeptions or run-time errors. To panic and quit is no option for Scaly. If your
code does fails to handle an error that can occur, Scaly won’t compile it.

Swift’s error handling is a bit advanced. It requires you to handle errors which are raised.
Unfortunately, you can circumvent that noble principle by writing try! before an expression that
might throw, leading to a runtime error. Apart from that, Swift cannot handle exceptions which were
raised by Objective-C code and which will be handled as run-time errors.

Of all other languages mentioned so far, ParaSail is the only one which eliminates run-time exceptions
completely, replacing them with strong compile-time checking of preconditions.

7.4. Conclusion
To sum up everything that was said so far: Of all programming languages mentioned here, only
the approach of ParaSail comes close to Scaly’s design principles. And yet, omitting globals and
assignable references completely is not necessary as long the globals are immutable and if you accept
that code portions which build up data structures using classes do not spawn new tasks as long as the
data are visible in a mutable way. Apart from that, ParaSail is still at a very early stage, and whether
implementations emerge which deliver on the performance promises still remains to be seen.

All other languages mentioned here do not offer the safety and ease of parallel and distributed
programming of Scaly.

35

Chapter 8. Memory Management
Scaly uses region-based memory management [https://en.wikipedia.org/wiki/Region-
based_memory_management] where objects conceptually live on the stack. No heap is used, and
therefore, neither garbage collection nor reference counting is required. Objects are accessed via
references within well-defined constraints which ensure safe parallel execution of the code.

8.1. Regions
With Scaly’s region-based memory management, objects are not allocated from a global heap, but
from a region. A region is formed each time program execution enters a block in which at least one
fresh object is assigned to a reference which is defined in that block. An example:

function f() {
 let a = new A()
 let b = createB()
 {
 let c = new C()
 {
 c.d = new D()
 }
 }
}

When a thread enters f, the outermost block of that function allocates a region in which two objects
are created: one object of type A to which the reference a points is created with new, and then one
object of type B to which the reference b points, is created by a function createB() (which might
create the object by itself using new or call another function which creates the object).

Then, the next block is entered, and a new region is allocated in which an object of type C is created
and then assigned to the reference c.

The innermost block of the function, however, creates no region because no object is assigned to a
reference which is defined in that block. The new D object is created in C's region instead since it is
assigned to d which is a member of d.

When the block which contains c is left, its region is recycled, and both the object to which c points
and the object to which its member reference d points cease to exist.

When the thread leaves f, the region which was created by its outermost block is recycled, too, and
the objects to which a and b pointed, vanish as well.

References like a, b, and c which are defined in a block are called root references. A root reference
cannot be returned by a function because the region in which the object lives to which that reference
points is already recycled since its block is left before the function returns.

References like d are called local references. A local reference points to an object which lives in
the region of a containing object as a member, array element, or dictionary key or value. A local
reference can only be returned from a function if it is contained in an object which was created before
the function was entered.

36

https://en.wikipedia.org/wiki/Region-based_memory_management
https://en.wikipedia.org/wiki/Region-based_memory_management
https://en.wikipedia.org/wiki/Region-based_memory_management

Memory Management

The bootstrapping compiler which is currently the only (known) implementation of Scaly is written
in C++. It uses a special form of the C++ new operator which is called placement new to create new
objects in the appropriate region. The runtime library which comes with the compiler provides the
necessary mechanisms for managing the memory in regions.

8.2. Pages
This compiler would compile the above function to a C++ function to something like the following:

void f() {
 _Region _region; _Page* _p = _region.get();
 A* a = new(_p) A();
 B* b = createB(_p);
 {
 _Region _region; _Page* _p = _region.get();
 C* c = new(_p) C();
 {
 c->d = new(c->getPage()) D();
 }
 }
}

When the function is entered, a _Region object is created for its block to provide memory for
allocating objects which are rooted in this block. The memory of a region is divided in pages of
constant size (typically 4 or 8 kB). Therefore, a _Page object _p is obtained from that region. Then a
new object of type A is created in _p using the placement variant of new.

All classes implement the placement new operator by getting memory from the page in a way similar
to this code (some error handling removed for brevity):

void* Object::operator new(size_t size, _Page* page) {
 return page->allocateObject(size); }

Next, the createB function is used to create a new B object in our current page _p. Since createB
needs to know in which page the object is to be created, it is passed to that function. The function
createB can use placement new to create the object or use another function, passing the pointer to the
page to it.

Then, the next block is entered, and a new region is created and a page is obtained from that page
which is used to create a new C object.

In the innermost block, a D object is created in the page of c. For that reason, c is asked to provide its
page for creating the object in. All classes implement a function _getPage() for this purpose:

_Page* Object::_getPage() {
 return _Page::getPage(this);
}

Since pages are always aligned and have a size of a multiple of 2, the page of an address can be
calculated easily by setting the relevant lower bits of the address to zero:

_Page* _Page::getPage(void* address) {
 return (_Page*) (((intptr_t)address) & ~(intptr_t)(_pageSize - 1));
}

37

Memory Management

8.3. Root Page Allocation
We have seen that each region provides a page upon block entry. The _Region class allocates its page
out of a large chunk of memory which is thread local:

__thread _Page* __CurrentPage = 0;

At thread start, before regions kick in, this memory is allocated:

posix_memalign((void**)&__CurrentPage, _pageSize, _pageSize * _maxStackPages);

The _Region class itself actually is only a very small helper. At block entry, it shifts the
__CurrentPage pointer up and initializes a _Page object at this position:

_Region::_Region(){
 __CurrentPage = (_Page*)(((char*)__CurrentPage) + _pageSize);
 __CurrentPage->reset();
}

At block exit, the extension Pages and exclusive Pages of the page (we will come to this later) are
deallocated, and the __CurrentPage pointer is shifted down:

_Region::~_Region() {
 __CurrentPage->deallocateExtensions();
 __CurrentPage = (_Page*)(((char*)__CurrentPage) - _pageSize);
}

This way, the memory area accessed by the __CurrentPage pointer during thread execution forms
a logical stack, and the pages which live in this area are called root pages (as opposed to extension
pages which we will cover in a later section of this chapter). Allocating a fresh region is done by
shifting a thread-local pointer.

8.4. Object Allocation
As we have seen, the _Region class itself only shifts the current root page pointer up and down the
root page stack as thread execution enters and leaves blocks which declare root references.

Most of the memory management logic is performed by the _Page class. This class provides memory
for allocating objects and, if required, extends the available memory by allocating a new page if its
own memory is exhausted.

A page is a memory area which is aligned to multiples of the page size which is usually 4 or 8 kB.
This memory area is controlled by a _Page object which lives at the start address of the page and
contains (among a few other things) an offset to the next object to be allocated, counted from the page
start address:

int nextObjectOffset;

If the space fits for a particular object to allocate, allocation is done by adding to nextObjectOffset
and returning the current location. Here a code snippet of the allocateObject method of _Page
which is used by the placement new operator of Object:

void* location = getNextObject();

38

Memory Management

void* nextLocation = align((char*)location + size);
if (nextLocation <= (void*) getNextExclusivePageLocation()) {
 setNextObject(nextLocation);
 return location; }

Here are two of the three helpers used (getNextExclusivePageLocation() will be explained later):

void* _Page::getNextObject() {
 return (char*)this + nextObjectOffset; }

void _Page::setNextObject(void* object) {
 nextObjectOffset = (char*)object - (char*)this; }

With this code, allocating an object is done taking the following steps:

1. The location of the next object to be allocated is calculated by adding nextObjectOffset to the
start of the page

2. The upper boundary of the object is calculated by adding the object size to location and aligning
the result

3. If the upper boundary is within limits, nextObjectOffset is calculated, and location is returned
as the new object address.

Thus, object allocation typically boils down to adding to an offset and checking it.

8.5. Extension pages
An extension page is allocated and used if the current page cannot provide enough memory to allocate
an object of the desired size. If the size required exceeds the maximum size which can be stored in a
fresh page, an oversized page is allocated directly from the operating system via posix_memalign and
is registered with the current page as an exclusive page. We will discuss exclusive pages in one of the
following sections. If the size required does fit in a fresh page, an extension page is allocated by the
following method of the _Page class:

_Page* _Page::allocateExtensionPage() {
 _Page* extensionPage = __CurrentTask->getExtensionPage();
 if (!extensionPage)
 return 0;
 extensionPage->reset();
 *getExtensionPageLocation() = extensionPage;
 currentPage = extensionPage;
 return extensionPage;
}

The getExtensionPage() method of the _Task class which is called first, allocates a page out of a
thread-local page pool whose start-up size is 4096 pages (one chunk) and which can extend itself by
adding more chunks. The pages in a chunk are bit mapped in an allocation map of that chunk, and
allocating a page in a chunk is a quick constant-time action.

Then, after the extension page is initialized with placement new, its address is stored at a memory
location at the very end of the page to be accessed at deallocation time:

_Page** _Page::getExtensionPageLocation() {
 return ((_Page**) ((char*) this + _pageSize)) - 1; }

39

Memory Management

Before allocateExtensionPage() returns, the extension page location is stored also in the
currentPage member as a shortcut to a page where allocation space should be available. This
member is updated also if a further allocation attempt results in an object which lives in an even newer
extension page.

This way, allocation can start from a root page forming a chain of extension pages if many objects
are allocated in the region of that root page. When this region is left, the deallocateExtensions()
method deallocates all extension pages by freeing them in the thread local page pool.

8.6. Exclusive pages
We have seen that a region can grow by extending its root page with an extension page, which can in
turn be extended by another extension page, and so on. When thread execution leaves the region, all
extension pages are deallocated from the page pool. But while our region is alive, we have seen no
way for deleting objects from a region — but that is what we need for mutable object data, because
otherwise we would leak memory by abandoning objects pointed to by mutable references if we set
those references to fresh objects.

For this reason, fresh objects which are assigned to mutable references, get their own (root) page, a
so-called exclusive page. An exclusive page can be easily deallocated if its leading object is deleted
while its region remains active.

Here are the relevant code lines which allocate and register an exclusive page:

_Page* exclusivePage = __CurrentTask->getExtensionPage();
exclusivePage->reset();
*getNextExclusivePageLocation() = exclusivePage;
exclusivePages++;

The number of active exclusive pages is stored in the int member exclusivePages of the page, and
the pointer to the next exclusive page address is calculated by the following helper method:

_Page** _Page::getNextExclusivePageLocation() {
 return getExtensionPageLocation() - exclusivePages - 1; }

Exclusive pages are allocated and initialized in the same way as an extension page, but they are
registered not at the very end of the current page but in the next lower addresses. Several exclusive
pages can be allocated and registered with a page, while their locations are stored in an area which
grows downward from the end of that page (while the space allocated by objects grows from the start
of the page).

If an exclusive page is deallocated, it is unregistered with the page holding it by shifting all lower
exclusive page addresses up if applicable and decrementing exclusivePages.

8.7. Oversized pages
String and array buffers can have sizes that exceed the net space of a freshly allocated page. If we are
to store such a thing, we allocate the necessary space directly from the operating system:

_Page* page;
posix_memalign((void**)&page, _pageSize, size + sizeof(_Page));
page->reset();

40

Memory Management

page->currentPage = nullptr;
*getNextExclusivePageLocation() = page;
exclusivePages++;
return ((char*)page) + sizeof(_Page);

Thus, we initialize the memory area as a page, mark it as oversized by setting currentPage to
nullptr, register the page as an exclusive page and return the memory address directly after the page
object data.

41

	The Scaly Book
	Table of Contents
	Part I. Introduction
	Chapter 1. The First Program
	Chapter 2. Hello World
	Chapter 3. Command line arguments
	Chapter 4. Code Blocks
	Chapter 5. Parallel Execution
	Chapter 6. Reference
	6.1. Program files
	6.2. Lexical structure
	6.2.1. Whitespaces
	Whitespace character sequences
	Single line comments
	Multiple line comments

	6.2.2. Tokens
	6.2.3. Literals
	6.2.4. Punctuation and Keywords
	6.2.5. Identifiers
	6.2.6. Operator

	6.3. The Program
	6.4. Files
	6.5. Statements
	6.6. Expressions
	6.6.1. Literal Values
	6.6.2. Object expressions
	6.6.3. Array literals
	6.6.4. Declarations
	6.6.5. Blocks and scopes
	6.6.6. Function Expressions
	6.6.7. Function calls
	6.6.8. Operator Expressions
	6.6.9. Operator Calls
	6.6.10. Array Operators
	6.6.11. Binding and Assignment Expressions
	6.6.12. Function and Operator Declarations
	6.6.13. External function declarations
	6.6.14. Intrinsic function declarations

	6.7. The Scaly Type System
	6.7.1. The Void data type
	6.7.2. Functions
	6.7.3. Operators
	6.7.4. Pointers
	6.7.5. Integer types
	6.7.6. Floating point types
	6.7.7. The character type
	6.7.8. The array type
	6.7.9. The string type

	6.8. The Scaly standard library
	6.8.1. Boolean Values
	6.8.2. Integral number types
	6.8.3. Characters

	6.9. Grammar
	6.9.1. Metagrammar
	6.9.2. Scaly Grammar

	6.10. Classes
	6.11. Objects
	6.12. Parents
	6.13. Object Age

	Part II. Design
	Chapter 7. Why Scaly?
	7.1. Avoiding Data Races and Concurrency Problems
	7.1.1. Functional Languages
	7.1.2. Rust

	7.2. Efficient Memory Management
	7.2.1. ParaSail

	7.3. Safety Against Program Failures
	7.4. Conclusion

	Chapter 8. Memory Management
	8.1. Regions
	8.2. Pages
	8.3. Root Page Allocation
	8.4. Object Allocation
	8.5. Extension pages
	8.6. Exclusive pages
	8.7. Oversized pages

