The Scaly Book

The Scaly Book

Table of Contents
O g 11T [F o o o R PRRSTRN 1
I I S T S A 100 = 0 TR 2
P22 L= | o YAV o TSR 3
3. Command [iNE @IQUIMENLSooueiiiieeieeieetie e ee ettt et et e s aeetesseesseeeesneesreensesneens 4
@00 (S =] oot PSR 5
I = = 1 = ol U 11 o o SRR 6
I = 1 (= 0o SRR 7
TN I 0T =0 N =SSP 7
6.2, LEXICEAl SITUCTUIE ...ttt sttt e et et e e e s neenneeneas 7
6.2.1. WRITESPDACESeeveeieeieieitieie sttt ettt este et e e seesaeetesneesaeesesneans 7
I W 0] (TSR 8
I T I = = | S RSTRRRRN 8
6.2.4. Punctuation and KEYWOITSccceeiieiriierieeieseesee et seeeee e 9
T [(= 0111 1= £ TS 9
B.2.6. OPEIBLONeeieieiueietieeiee et ettt e e s e e e be e s ae e e ee e saeesabeesbeeaaseesseeeaeeanneeenneenneas 10
6.3, THE PrOQIraM ...ttt st esbe et e sneesaeenee s 10
O3 1 =SSP SRPRS 10
B.5. STALEMENTS ...ttt h e e e e e e e e b e e sae e e re e ae e e r e e ene e 10
I I o d 1=] 1SS 10
6.6.1. Literal VAlUBSooeieee et st s 10
6.6.2. ODJECE EXPrESSIONScueeiiitieieeee ettt e e e beeneesne e 11
X R N (= Y 11 (= =!I 11
6.6.4. DECIAraLIONScoiueeieieeiee ettt sttt r e e ne e e s 11
6.6.5. BIOCKS N0 SCOPESc.veiiieieiie ittt sttt sre e 12
6.6.6. FUNCLION EXPIESSIONSooiuieieeiieiieiieeiesiee e e et stesiee e sae e e e snsesseessessesneeneens 12
6.6.7. FUNCHON CAIIS ..ot 12
6.6.8. OPErator EXPIESSIONScceeiverieitierieeeesteesieeeesteeneeseessessaesseessesssesseessessessesnsens 12
6.6.9. OPEralor CallSooeoiiieeee e e 12
6.6.10. AITAY OPEIBLOIScoieeiiueeeeieeieeetee st e e teesieeebeeseeesseesaeeebeesseeesseesaeeereesnneenseens 13
6.6.11. Binding and ASSIgNMENt EXPreSSIONScc.ceeerieenieeienieeie e sieeee e seeeee e 13
6.6.12. Function and Operator DeClarationscccevveeereeienieeseese e 13
6.6.13. External function declarationscccoeereeienieiesesee e 13
6.6.14. Intrinsic fuNCtioN deClarationsccoveriiiieiiee e 14
6.7. The SCalY TYPE SYSLEIM ...ttt sttt sreesne e 14
6.7.1. The VOId Jata@ tYPReeeeeie ettt 14
B.7.2. FUNCLIONS ...ttt ettt te s e s te e e e sseesbeeneesreenseeneens 14
B.7.3. OPEIELOIScouteeiueeeteeeeeetee et e it e s ettt e saee e bt e sae e e beesaee e beeaseeebeesaeeabeesnneenseesnneans 14
A o] 1= £ PR 14
B.7.5. INLEOEN TYPIES ...ttt ettt e e b e e s an e e be e sareenaeesnneeneas 15
6.7.6. FlOating POINE TYPESeeieeeeieieeie ettt st ae e e b eesnee e 15
6.7.7. The CharaCter tYPRooeeiieeeetee et ee s 15
AR T I g T = Y 1Y/ o= S 15
e R I o T T e TN 1Y o 16
6.8. The Scaly standard [IDrary ... 16
6.8.1. BOOIEAN VAIUES ..ottt et 16
6.8.2. Integral NUMDEr TYPESoo i 16
ST T O = o = £ TR 16

The Scaly Book

B.9. GIaIMIMAeiiiieiee ettt e e sae e e s e e s se e s s e e smeesnreesmeesaneenneeanneeaneens 16
B.9.1. MEAOIAIMIMANeoiiiiiiiiiiie i s e e ssr e e s sae e sseeesneeenns 17

6.9.2. SCAY GIaMIMArcceevieieeieeite e see et e s te e e sreeste s e sbaesseeneesreeaeenaesreesenneenns 18

B.10. CIBSSESvivereiteriesiesiee ettt sttt b sttt e b st e bbb e b e st Rt et et et naeebe b nenne e 25
L3N O o 1= oi £ TP 25

L R = = £SO RR 26

L R I @ o= ot Ao = USSP 26

I 0 = o o S 29
7. WRY SCAIY? . bbbttt bbb et e ettt b b neene e 30
7.1. Avoiding Data Races and Concurrency Problems ..., 30
7.1.1. FUNCLIONal LANQUABJEScocveeeeeiiesieeieeieesteesteeeeseeaessee s e e eseesseessesneesseensesnnens 31

7. 0.2, RUSE ..t bbbttt bbbttt e et ne e 31

7.2. Efficient Memory Managementccccceveeieeieeseeseeie st eee e sieesae e sre e sseeneas 32
T.2.1. PAr8SAI ..o et 33

7.3. Safety Against Program FaillUreSccoceiieie it 34

A O o 11 '] o PP 35

8. MEMOrY MaNAGEIMENTooiiiiiiiie it esiee st e e s e e e e e s e e s be e s ssbe e e sase s s ssseesbeeesbaeesbeeesnneeens 36
S 300 R (= o 0] S 36

B2, PAOES ...ttt bbb bt e ettt be st 37

8.3. ROOt Page AIIOCELIONccueeeeeeeeieeie ettt e e et e nns 38

SR ® o= o AN | oo 4 o o S 38

8.5. EXIENSION PBYEScuveeueeereeieeiesteesteetesteesteeeesseessesseesseessesneesseesseassesseessesssesseensesnsessenees 39

8.6. EXCIUSIVE PAJESveveeiieeeseieiteetesee st et e st te s e teeaesseesbe et e saeesteensesseenseeneesneesseennenns 40

I OV = £ 1= o [7= o L= TSRS 40

Part I. Introduction

Chapter 1. The First Program

The most basic expressionsin Scaly are literals. A literal simply returns avalue that is written literally
into a program. So our first program is not the famous Hello World version in Scaly (which comes
later because it is obligatory), instead we write up the shortest non-empty Scaly program imaginable:

0

Use your favorite text editor and type that lone zero digit into afile, giveit aname like

shortest. scal y, and compileit to an executable. As you might expect, the program does exactly
nothing useful. Immediately after startup, it returns ao value to the operating system just to indicate
that everything went fine. If a program isto return 0 as the last action at the end of it, that o literal
can be omitted. That’ s why the shortest Scaly program actually is the empty program which contains
nothing and does exactly the same as the above version - just returning 0. Try it by deleting the zero
digit, compiling and running the program.

There are also string literalslike" Hel 1 o Wor 1 d! ", thetwo bool literalst r ue and f al se, and more.

Chapter 2. Hello World

Scaly comes with a standard library which among other stuff contains a function which prints a string
to the standard output (which is the output of your terminal, or a debug console, depending on the
environment in which your program was started into). The function has the name pri nt and accepts
astring, returning nothing to the caller. We use it to write up the inevitable Hello World program in
Scaly:

print "Hello World!"

When you run that program you will notice that no line break is printed. The reason is that we did not
include one in our string literal, and the print function does not print aline break by itself. We correct
that by inserting aline break literally:

print "Hello Wrld!

Scaly can contain al kinds of whitespace literally. If you don’t like to span string literals more than
one line for readability reasons or want more compact code, you can use an escape sequence as well:

print "Hello World!\n"

Chapter 3. Command line arguments

Toreturnani nt value (even an implict 0) is part of the calling convention for stand-alone programs:
Zero or more string arguments are passed to the program, and an integer value is returned which acts
as an error code which might be useful in extreme error situationsiif all other means of diagnosislike
logging or tracing fail because they do not work for some pathologic reason which can be indicated by
that error code.

The arguments passed to the program are bound to one parameter which isvisible at the\ top code
level whose nameisar gunent s. This parameter isan array of strings, and we can get its| engt h field.
So our next Scaly program (not much useful either) returns the number of arguments passed at the
command line:

argunents. |l ength

This expression actually consists of two parts: an item identified by the ar gunent s identifier and the
access of its| engt h field viathe dot.

Chapter 4. Code Blocks

In al but the ssmplest programs, you structure your code using blocks. Like in commonplace
languages of C descent, a block starts with aleft curly brace, followed by zero or more statements,
and ends with aright curly brace. An example:

{

let a: int =2
let b: int =3
a+b

}

But there are important differences to C and friends:

First, code blocks are expressions - they may return a value. Because of this, if the last statement of a
code block is an expression, the value which is returned by that statement is the value which the code
block returns. Obviously, our example block returnsani nt whose valueis s, and thereforeisavalid
Scaly program.

Second, the statements of a block can be executed in any order as far as data dependencies and the
pureness of called functions alow. That isthe main selling point of Scaly - it automatically schedules
parallel and even distributed computation wherever possible.

Chapter 5. Parallel Execution

Not only statementsin ablock are executed in parallel, but also function arguments and operands, as
long they are pure and do not depend on earlier computations in the block.

A computation is called pure if it does not depend on anything else than its input parameters. (With
some care, even computations that obtain information from external input can be declared pure by you
if needed.)

That said, scheduling parallel computation comes at a cost - tasks have to be created and scheduled
for execution by alocal worker thread pool, by a GPU, or even by a cluster of remote machines. In
the latter case, input data have to be serialized and sent via the network to the remote node, where the
data are deserialized. When the computation is done, its results have to be sent back. Last not least the
parallel work has to be synchronized.

Therefore, a Scaly implementation hasto justify parallel execution at |east by some heuristic
reasoning, better by profiling a set of reference computation workloads. Scheduling some single
floating point additions which might each take nanoseconds or less for parallel execution surely
isn’t worth the overhead. Parsing a multitude of source filesin contrast can be expected to speed
up compiling a program, and performing heavy number crunching needed for fluid mechanics
calculationsin parallel would a safe bet.

Adjusting the granularity of paralel execution, however, isbeyond the Scaly language specification
which only states what computations can potentially be done in parallel, or to be exact, makes no
statement about the order in which independent computations are done.

Chapter 6. Reference

This chapter describes the Scaly Programming Language.

The Scaly Programming Language is defined by the structure and semantics of the statements which
can be used to write a Scaly Program.

On the lowest level, a Scaly program consists of a sequence of characters. The lexical structure of the
Scaly Programming L anguage describes how the characters of the program code are combined to form
a sequence of tokens and whitespaces.

The structure of the statementsis defined by the grammar of the Scaly Programming Language.

The documentation you are reading sometimes refers to the reference implementation of the Scaly
Programming Language, but an alternative implementation can choose to do things in another
way, or to provide additional functionality like acommand line playground which the reference
implementation does not have.

Particularly, the standard library which comes with the reference implementation is not part of

the Scaly Programming Language in a strict sense. Nevertheless, some elements like basic types,
operators, and functions of this standard library like basic types are used in the code samples that are
provided.

6.1. Program files

The reference implementation of the Scaly Programming Language, which the documentation you are
reading is part of, compiles a Scaly program into an LLVM assembly language [https://Ilvm.org/docy
LangRef.html] module which can be processed further using the LLVM tools [https://Ilvm.org/docs/
CommandGuide/index.html].

A Scaly program consists of one or more files which contain the program code. The Scaly compiler
compiles a Scaly program to a piece of executable code. How this code can be executed depends on
the implementation of the Scaly compiler. A fileis an object from which a Scaly compiler can read
a sequence of characters and parse them into statements. A file must contain zero or more complete
statements.

6.2. Lexical structure

On the lowest level, a Scaly program is made up of a sequence of characters which are read from

one or more files. For the Scaly Programming Language, some characters have a special meaning,
which means that they control the forming of the conversion of the character sequence into a sequence
of tokens and whitespaces. These tokens are then parsed into expressions which make up a Scaly
program or library.

6.2.1. Whitespaces

Whitespaces are sequences of characters which have no meaning by themselves, apart from being
used for separating tokensif no punctuation can be used.

https://llvm.org/docs/LangRef.html
https://llvm.org/docs/LangRef.html
https://llvm.org/docs/LangRef.html
https://llvm.org/docs/CommandGuide/index.html
https://llvm.org/docs/CommandGuide/index.html
https://llvm.org/docs/CommandGuide/index.html

Reference

Whitespace character sequences

Outside of comments or strings, the following characters form whitespace character sequences:
* Space,

e tab,

* line break, and

* linefeed.

Single line comments

Two forward slashes start a single line comment which spans all following characters up to and
including aline break.

/1 This is a single line comrent.

Multiple line comments

A forward dash followed immediately by an asterisk starts a multiple line comment which spans all
following characters up to and including an asterisk and a forward slash immediately following.

/* This is a nmulti-line coment.
Conti nued conmment text
The comrent ends now. */

Multiple line comments can be nested:

/* This comment is /*nested*/.*/

6.2.2. Tokens

Tokens form the building blocks of expressions. The syntactic grammar of the Scaly Programming
Language is expressed in terms of tokens. Tokens can be

o literals,
* punctuation,
» keywords, and

e identifiers.

6.2.3. Literals

Literals are used to write constant values directly into the program.

A numeric literal starts with adigit, followed by zero or more digits, optionally one decimal point,
optional fraction digits, an optional exponent consisting of the exponent character (E or e) and
exponent digits.

Reference

If the first two characters are 0x, the literal is a hexadecimal literal. The digits that may follow may
include the charactersa, b, ¢, d, e, f, A, B, C, D, E, and F. No decimal point or exponent is allowed for
hexadecimal literals.

Some lexically valid numeric literals:

42

1

0. 22e4567
1E6
0xFB04
0x123abc

(A minus sign is not part of a number literal. It istypically implemented as a unary operator.)

String literals start with a double quote and end with a double quote:
"This is a string"

All white space characters can be directly embedded in strings:

"Astring with a
line break"

Tabs, carriage returns, line feeds, and NUL characters can be escaped by a back slash and the
characterst, r, n, 0 respectively. The back slash escapes itself, and the double quote is escaped by a
back slash aswell.

"Aline feed\n, an \"escaped\" string, an escaped \\ backsl ash,
a \ttab, and a carriage \rreturn."

Character literals start with a single quote, continue with the character whose value is to be written,
and end with a single quote:

" a
"0" // The zero digit character

The characters that can be escaped in string literals, and the single quote must be escaped in a
character literal.

1 \ "o
1 \ [
'\0'" // The NUL character

6.2.4. Punctuation and Keywords

Punctuation characters are used (alongside keywords) for building the structure of expressions.
Keywords are used (alongside punctuation characters) for building the structure of expressions.

The complete list of punctuation characters and keywords is contained in the Grammar Reference.

6.2.5. Identifiers

All character combinations which are not white space, literals, punctuation, or keywords, are
identifiers. Some examples:

Reference

W ndyShor e
foo_bar
baz

|dentifiers are used as names.

6.2.6. Operator

All combinations of operator characters are operators. The operator charactersare +, -, *,/,=,%&, | ,
A, ~, <, and >. Some examples:

+
* *

<
>>

Operators are used as names like identifiers.

6.3. The Program

The Scaly compiler processes a program which contains all code which isto be compiled in asingle
compiler run to an executable program, alibrary, or code which is compiled just-in-time (JI Tted). A
program consists of zero or more files.

6.4. Files

A fileisasingle sequence of characters which contains zero or more characters which make up zero
or more complete statements.

6.5. Statements

A Scaly program consists of statements. Statements are the building blocks of a Scaly program.
A statement can perform computation work and either return the result of the computation to the
enclosing expression or bind it to an identifier which can be referred to in the current scope.

6.6. Expressions

An expression performs actual computation work and usually returns a value as a result of that work.
There are numerous forms of expressionsin Scaly like literals, function calls, operations, and many
more.

Expressions can be optionally terminated by a semicolon. Line breaks are not significant for
expression termination.

6.6.1. Literal Values

The most basic expressionsin Scaly are literal values. A literal value expression evaluates to the value
that iswritten literally into a program.

10

Reference

1. 602E- 19
"baz"
'

There is no such thing as a boolean literal as a part of the language. Boolean constants can be defined
by aruntime library.

6.6.2. Object expressions

An object expression is an expression which combines zero or more expressions, the so-called
components, to an object. An object is a combination of data which are used together.

() // The enpty object which contains no conponents.
(42,"The Answer") // Contains the nunber 42 and a string
(()) /1 A non-enpty object which contains the enpty object as its only conponent.

An object consisting of a single component is semantially equivalent to the component contained by
that object:

(5) /] =>5

The components of an object can be accessed by itsindex, starting with 1 at its first component. The
component index must be known at compile time, it cannot be computed.

(7). 111 =>7
(1, (2, (3, (4)))).2.2.2 1/ =>4

The components of an object can be given a name which can be used to access them:

(brand = "I FA", nodel = "F9", year = 1952).year // => 1952

6.6.3. Array literals

An array literal combines zero or more expressions of the same type:

[2, 3, 5, 7] // An array with four conmponents

A component of an array can be accessed by appending brackets which contain the index. Theindex is
zero-based.

[1, 2][1] /] => 2

6.6.4. Declarations

An declaration evaluates an expression and binds the value which was returned by that expression to a
constant or variable:

let a =2

/1 b cannot be used here
let b =3

all 2

var ¢ = b

b// 3

The constant or variable can be used in every expression which follows its declaration in the current
scope. A scopeis either the global scope or the scope of a block.

11

Reference

6.6.5. Blocks and scopes

A block is an expression which combines zero or more expressionsin alocal scope. The last
expression of the block is returned.

{ 99} /1 => 99
A scope gives ablock a name:

scope A {
let b =2

}

From a scope, a constant can be used after the scope declaration.

Abl/ll =2

6.6.6. Function Expressions
A function expression evaluates to a function value. It consists of the f unct i on keyword, an object
literal, and a block.

function (a) { a} // => function(a){a}

6.6.7. Function calls

A function (an expression which evaluates to a function) can be called by combining it with an object
to be used as an input to the function:

let getltself = function (a) { a };
getltself(2) // => 2

6.6.8. Operator Expressions
For the Scaly programming language, an operator is a function which receives two objects as input.
An operator expression consists of the oper at or keyword, two object literals, and a block.
operator (a) (b) { (a, b) } // => operator(a)(b){(a,b)}
Scaly knows no binary operator precedence, execution is|eft to right:

2 +3* 4/ =20

Operator precedence can be done by putting binary operation into parentheses (which are technically
object expressions with one component which simply expose the containing operation after
evaluation):

2+ (3* 4) /] => 14

6.6.9. Operator Calls

An operator can be called by combining an object expression with the operator and a second object
expression. The following example declares the >< operator which combines two expressions to an
object:

12

Reference

et >< = operator (a) (b) { (a,b) }
2 >3/ =>(2,3)

6.6.10. Array Operators

A special variant of the operator expression is one that combines an array literal with ablock. It can
combine multiple operads using one operation call.

let with = operator [a] { (a[0], a[1], a[2], a[3]) }
1 with 2 with 3 with 4withb5// =>(1,2,3,4,5)

The order of evaluation of the operator arguments is not specified.

6.6.11. Binding and Assignment Expressions

Binding expressions bind an expression to a pattern. A pattern is commonly an identifier expression
which is a name of the object to which the expression is bound. Binding expressions can be constant
(using | et), variable (using mut abl e), or inferred (using var):

var a 2

var b 3

var c a + b
cl/l =5

Writing an equals sign after let, mutable, or var is not required by the language, but since the standard
library provides the unary = operator, the binding expressions can use them. Together with optional
semicolons, the code might be more readable:

var a
var b
var ¢
cll =>

+ b;

1 nn
ao wiN

An object bound to anut abl e name can be altered by setting it to a new value using the assignment
expression:

mut abl e d
set d d +
d// =>17

6
1

6.6.12. Function and Operator Declarations

Instead of declaring afunction or using | et , a shorter and more syntax can be used:
function getltself(a) { a}

operator >< (a)(b) { (a, b) }
operator with [a] { (a[0], a[1], a[2], a[3]) }

6.6.13. External function declarations

Externa functions are functions that are provided by the runtime environment. If external functions
are to be made accessible from a Scaly program, they must be declared using the following syntax:

external _fopen(filenane: pointer, node: pointer): pointer

13

Reference

external _fclose(file: pointer)

6.6.14. Intrinsic function declarations

Intrinsic functions are functions that are provided by the compiler infrastructure. They must be
declared using the following syntax:

intrinsic function Ilvmsin.f64(val ue: double): double

6.7. The Scaly Type System

Types describe kinds of data which can be processed by a Scaly program. Most importantly, atype
determines which values a variable or constant can have, and the compiler chooses a representation

of the data on the hardware on which the code of a Scaly program runs. There are primitive data types
like the void object, functions, and operators, integral and floating point numbers, enumerations, bit
masks, characters, pointers,and complex datatypes like objects, arrays, and variants which combine
primitive data types.

6.7.1. The Void data type

The void data type has no value. It can be used as an object that has no data, and it can be written as
an empty object expression:

0

They are used as empty input or output of functions or operators or as an option of variant data types.

6.7.2. Functions

Functions are objects that contain executable code which can be called, and which receive one input
object (which can be void) and return one output object (which can be void aswell). The type of a
function is uniquely identified by its signature, i.e., the types of itsinput and output. Two functions
which have the same signature are of the same type.

6.7.3. Operators

Operators are objects that contain executable code which can be called, and which receive two input
objects (which can be void) and return one output object (which can be void as well). The type of an
operator isuniquely identified by its signature, i.e., the types of its two input objects and its output
object. Two operators which have the same signature are of the same type.

6.7.4. Pointers

The poi nt er type represents an address in the address space of the machine. It can point to any
kind of data, and the type or semantics of the data are not defined. A pointer can be converted to
any dataitem without any runtime or compile time checks. The author of the code is responsible to
guarantee that any instance of a pointer which is used carrys avalid address, and that the pointer is
only converted to a constant or variable of the type of datawhich lives at that address.

14

Reference

Pointers should only be used when external functions are called by Scaly code or by Scaly functions
that are called from external code.

6.7.5. Integer types

The standard library which comes with a Scaly compiler may define integer types which are defined
by their bit width and the presence or absence of a sign. These types typically define type conversion
and other functions.

Numeric literals written into a Scaly program have no type by themselves. The type of the value that
is generated by the compiler is either inferred from the usage of the literal, and if that is not possible,
the smallest possible integer type is assumed if the literal is an integer.

6.7.6. Floating point types

The standard library which comes with a Scaly compiler may define floting point types which are
defined by their bit width. These typestypically define type conversion and other functions.

Numeric literals written into a Scaly program which do not represent an integral number are given
atypethat isinferred from the usage of that literal. If thisis not possible, afloating point typeis
assumed that the compiler seesfit for the runtime environment for which the compiler was provided.

6.7.7. The character type

Thechar type represents all possible character values which are possible for the runtime environment
for which the Scaly compiler isimplemented. The Scaly Programming Language makes no
assumptions about the storage format of the character value.

The standard library which comes with a Scaly compiler may define utility functions for conversion
and other tasks.

6.7.8. The array type

An array is asequence of objects of the same type in memory. The type of the array is defined by its
length and the type of the objects that are contained in the array.

An array can have either afixed sizeif the length of the array is known at compiletime, or avariable
sizeif thelength of the array is not known at compile time.

In the latter case, the count of the objectsis stored as a packed integer in front of the sequence of the
objects in memory.

The packed integer format stores stores a number to be encoded as a sequence of digits to the base of
127. Each digit is stored in one byte, the lowest digit coming first. The highest digit hasits highest
bit set to 0 which signals the end of the sequence of digits of the number. The highest bit of the
lower digitsis set to 1. The lower 7 bits of all bytes encode the value of the digit as an unsigned byte
number.

Thus, array lengths from 0 to 127 are encoded in just one byte, and lengths from 128 to 16128 are
encoded in two bytes, lengths from 16128 to about 2 millions take three bytes and so on.

15

Reference

6.7.9. The string type

Thestri ng typeistechnically an array of bytes. This means that the length of the string whichis
stored along with the bytes is the length of the byte sequence which represents the string and not
the count of characters which the string contains. The difference to abyte array is the fact that the
runtime library can interpret the stored byte sequence as a stream of characters and, based on that
interpretation, can implement string access and manipulation functionality.

String constants in memory are stored in the UTF-8 [https.//en.wikipedia.org/wiki/UTF-8] format.

6.8. The Scaly standard library

This section describes the types of the standard library that comes with the reference implementation
of the Scaly Programming Language. Y ou can use the Scaly Programming Language without the
standard library, and provide your own basic types.

6.8.1. Boolean Values

There is one boolean value type, bool . It can have two values, f al se and t r ue.

6.8.2. Integral number types

Anintegral number type is determined by the range of integral numbers which the number can
take on. Scaly defines a set of integral number types which are characterized by their bit width, and
whether they carry asign or not:

* byt e and sbyt e (8 bits unsigned and signed)
e short andushort (16 bits signed and unsigned)
* int andui nt (32 bitssigned and unsigned)

* | ong and ul ong (64 bits signed and unsigned)

6.8.3. Characters

Thechar type represents exactly one character. A character is uniquely identified by its code point
which is a non-negative integral number. Which code points are valid and the semantics of the
individual characters are determined by the character set used by the operating system and/or the
runtime library.

6.9. Grammar

The grammar of the expressions of the Scaly Programming Language is defined as an SGML [https://
en.wikipedia.org/wiki/Standard_Generalized_Markup_L anguage] document.

The reference implementation of the Scaly Programming Language actually generates its complete
parser and al AST classes directly out of the grammar description given in the follwoing sections.

16

https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/Standard_Generalized_Markup_Language
https://en.wikipedia.org/wiki/Standard_Generalized_Markup_Language
https://en.wikipedia.org/wiki/Standard_Generalized_Markup_Language

Reference

6.9.1. Metagrammar
Since SGML itself is a meta-language, the language in which the grammar is formulated is expressed
asthe following SGML DTD which is explained below:
<! ELEMENT granmar - - (syntax+, keyword*, punctuation*)>

<! ELEMENT syntax - O (content)*>
<I ATTLI ST synt ax

id ID #REQUI RED
abstract (abstract| concrete) concrete
base | DREF #| MPLI ED
mul tiple (mul tiple|single) single

top (t op] nont op) nont op
program (program nonprogram nonpr ogr am

>

<! ELEMENT content - O EMPTY>
<I ATTLI ST cont ent

type (synt ax| keywor d| punctuation|identifier|literal|eof) syntax
i nk | DREF #| MPLI ED
property CDATA #| MPLI ED
mul tiple (mul tiple|single) single
opti onal (optional|required) required

>

<! ELEMENT keyword - O EMPTY>
<l ATTLI ST keyword

id ID #REQUI RED
>

<! ELEMENT punctuation - O EMPTY>
<! ATTLI ST punctuati on
id ID #REQUI RED
val ue CDATA #REQUI RED
>

A gramar contains at least one synt ax rule, zero or more keywor d € ementss, and zero or more
punct uat i on €lements.

A synt ax contains zero or more cont ent €lements.

A synt ax rule can be abst ract or concr et e, with concr et e asthe default. An abstract syntax
ruleis asuperset of other syntax rules. An example for an abstract syntax is an Expr essi on. Asa
convention, an abstract syntax contains only links to other syntax rules which indicate what the syntax
can be. An Expr essi on, for instance, can be aSi npl eExpr essi on (being abstract itself), or aBl ock
(which is concrete), or one of a number of other expressions.

A concrete syntax rule contains content elements which describe the contents of that syntax. A Bl ock,
for instance, containsal ef t Cur | y punctuation, mul ti pl e Expr essi on elements, and ari ght Curly
punctuation. Other content can beani dentifi er, akeyword, aliteral, or aneof (thelatter one
signals the end of the file)

A concrete syntax rule which is an instance of an abstract syntax rule, needs to indicate its base
syntax rule.

The top-level syntax rule of amodule needsthet op attribute.

17

Reference

The root syntax rule of the grammar needs the pr ogr amattribute.

A content itemcanlink toasynt ax, keywor d, Or punct uat i on element. The pr oper t y attribute
is the name of the syntax member variable name in the AST. If acont ent linksto asynt ax, the
mul ti pl e attribute indicates that this syntax can occur multiple timesin that context, and the

opti onal attribute indicates that this syntax is optional in that context.

Thekeywor d hasitsvalue asitsi d.

Thepunct uat i on hasitsvaluein theval ue attribute.

6.9.2. Scaly Grammar

Below the grammar of the Scaly programming language is defined in terms of the meta grammar
given in the previous section. Please note that a character sequence complying to the grammar is not
necessarily avalid Scaly program. All valid Scaly programs, howver, comply with this grammar. The
semantic requirements for the expressions to form avalid Scaly program are described in the Program
section and the sections that follow.

<I DOCTYPE gr ammar SYSTEM "granmmar. dtd">

<gr ammar >

<syntax id =
<cont ent
<cont ent

<syntax id =
<cont ent

<syntax id =
<cont ent
<cont ent

<syntax id =
<cont ent
<cont ent
<cont ent

<syntax id =
<cont ent
<cont ent
<cont ent
<cont ent
<cont ent
<cont ent
<cont ent
<cont ent

<syntax id =
<cont ent
<cont ent

<syntax id =
<cont ent
<cont ent
<cont ent
<cont ent

Pr ogram
identifier

link = File

File

link = Segnent
Segnent

link = Statenent
link = sem col on
Bl ock

link = leftCurly
link = Statenent
link = rightCurly
St at enent

link = Using

link = Declaration
link = Expression
link = Set

link = Break

link = Continue
link = Return
link = Throw
Usi ng

[ink = using

link = Path

Decl arati on

link = Let

link = Mutable
link = Var

link = Thread

mul tiple

nul tiple

mul tiple

mul tiple

nmul ti pl e abstract

nul ti pl e abstract

opti onal

opt i onal

program
property = name

property = files

top
property = statenents
property = Step

base = Pri maryExpression

property = statenents

base

St at enent

property = path

base = St at enent

18

Reference

<content link = C ass
<content link = Constructor
<content link = Method
<content link = Function
<syntax id = Let
<content link = let
<content link = Binding
<syntax id = Mitable
<content link = nmutable
<content |ink = Binding
<syntax id = Var
<content link = var
<content l|ink = Binding
<syntax id = Thread
<content link = thread
<content link = Binding
<syntax id = Binding
<content link = Pattern
<content |ink = TypeAnnotation
<content |ink = Expression
<syntax id = Pattern
<content link = Wl dcardPattern
<content link = ldentifierPattern
<content link = ExpressionPattern

IdentifierPattern
link = Path
link = TypeAnnot ation

<syntax id =
<cont ent
<cont ent

<syntax id = Wl dcardPattern
<content |ink = underscore

<syntax id =
<cont ent

Expr essi onPattern
link = Expression

<syntax id =
<cont ent
<cont ent

Expr essi on
link Pri mar yExpr essi on
[ink Post fi x

<syntax id = PrinmaryExpression

<content link = Nane
<content |ink = Constant
<content link = If
<content link = Switch
<content link = For
<content link = Wile
<content link = Do
<content link = This
<content |ink = CbjectExpression
<content link = Bl ock
<content link = SizeO
<syntax id = Nane
<content link = Path
<content link = GenericArgunents
<content link = LifeTine

opt i onal
mul tiple

abstract

opti onal

mul tiple

mul tiple optiona

nmul ti pl e abstract

base =

opti onal
opti onal

base = Decl aration
property = binding
base = Decl aration
property = binding
base = Decl aration
property = binding
base = Decl aration
property = binding
property = pattern
property = typeAnnotation
property = expressions
base = Pattern

property = path
property = annotati onFor Type

base = Pattern

base = Pattern
property = expression

base = Statenent
property = primary
property = postfixes

Pri mar yExpr essi on

property = path
property = generics
property = lifeTine

19

Reference

<syntax id = Constant base = Pri maryExpression
<content literal property = litera
<syntax id = If base = PrimaryExpression
<content link = if
<content link = |eftParen
<content |ink = Expression mul tiple property = condition
<content link = rightParen
<content link = Bl ock property = consequent
<content link = Else optional property = el seC ause

<syntax id = El se
<content link = el se

<content link = Block property = alternative
<syntax id = Switch base = Pri maryExpression

<content link = switch

<content link = |eftParen

<content |ink = Expression mul tiple property = condition

<content link = rightParen

<content link = leftCurly

<content link = Swi tchCase mul tiple property = cases

<content link = rightCurly

<syntax id = SwitchCase mul tiple
<content link = CaselLabel property = | abe
<content |ink = Bl ock property = content
<syntax id = Caselabel abstract
<content link = |ItenCaselLabe
<content |ink = DefaultCaselLabe
<syntax id = |ltenCaselLabel base = CaselLabe
<content link = case
<content link = Pattern property = pattern
<content link = Caseltem mul tiple optional property = additional Pattern:
<syntax id = Defaul t CaselLabel base = Caselabe
<content |ink = default
<syntax id = Caseltem nul tiple
<content |ink = conma
<content link = Pattern property = pattern
<syntax id = For base = PrimaryExpression
<content link = for
<content link = leftParen
<content identifier property = index
<content |ink = TypeAnnotation optional property = typeAnnotation
<content link =1in
<content |ink = Expression mul tiple property = expression
<content link = rightParen
<content |ink = Block property = code
<syntax id = Wile base = PrimaryExpression
<content link = while
<content link = |leftParen
<content |ink = Expression mul tiple property = condition
<content link = rightParen
<content |ink = Block property = code
<syntax id = Do base = Pri maryExpression

20

Reference

<cont ent
<cont ent
<cont ent
<cont ent
<cont ent
<cont ent

<syntax id =
<cont ent

<syntax id =
<cont ent
<cont ent
<cont ent
<cont ent
<cont ent
<cont ent

<syntax id =
<cont ent
<cont ent
<cont ent

<syntax id =
<cont ent
<cont ent

<syntax id =
<cont ent

<syntax id =
<cont ent
<cont ent
<cont ent
<cont ent

<syntax id =
<cont ent
<cont ent

<syntax id =
<cont ent
<cont ent
<cont ent
<cont ent

<syntax id =
<cont ent
<cont ent

<syntax id =
<cont ent
<cont ent

<syntax id =
<cont ent

<syntax id =
<cont ent
<cont ent
<cont ent
<cont ent

link = do

link = Bl ock

link = while

link = | eftParen
link = Expression
link = rightParen
Thi s

link = this
Post fi x

link = Catch

link = Menber Access
link = Subscri pt
link = As

link = 1Is

[ink = Unwap

Catch

link = catch

link = CatchPattern
link = Expression

CatchPattern

code

property

mul tiple property = condition

base = PrimaryExpression

mul ti pl e abstract

base = Postfix

t ypeSpec
handl er

property
optional property

abstract

link = WI dCardCat chPattern

| i nk = NaneCat chPattern

W | dCar dCat chPat t er n
link = Wl dcardPattern

NameCat chPatt ern

i nk = Nane
link = | eftParen
identifier

[ink = rightParen

Menmber Access
link = dot
identifier

Subscri pt
link = | eftBracket
link = Expression

link = Objectltem
link = rightBracket
As

link = as

link = Type

I's

link =is

link = Type

Unwr ap

li nk = excl amati on

hj ect Expressi on
link = | eftParen

link = Expression
link = Cbjectltem
link = rightParen

base = CatchPattern
property = pattern

base = CatchPattern
optional property = nenber

optional property = errorNane

base = Postfi x
property = nenber

base = Postfix

mul tiple optional property = firstltens
mul ti pl e optional property addi ti onal I tenses

base = Postfix
property = typeSpec
base = Postfix
property = typeSpec

Post fi x

base

base = Pri mar yExpression

nul tiple optional property = firstltens
nultiple optional property = additionalltenses

21

Reference

<syntax id =
<cont ent
<cont ent

<syntax id =
<cont ent
<cont ent

<syntax id =
<cont ent
<cont ent
<cont ent
<cont ent

<syntax id =
<cont ent
<cont ent

<syntax id =
<cont ent

<syntax id =
<cont ent
<cont ent

<syntax id =
<cont ent
<cont ent

<syntax id =
<cont ent
<cont ent
<cont ent
<cont ent
<cont ent
<cont ent

<syntax id =
<cont ent
<cont ent

<syntax id =
<cont ent
<cont ent

<syntax id =
<cont ent
<cont ent
<cont ent
<cont ent

<syntax id =
<cont ent
<cont ent

<syntax id =
<cont ent
<cont ent

<syntax id =
<cont ent
<cont ent

oj ectltem
link = comma

link = Expression
Si zeO™

link = sizeof
link = Type

Set

link = set

link = Expression
link = col on

link = Expression
Br eak

link = break

link = Expression
Cont i nue

link = continue
Ret urn

link = return
link = Expression
Thr ow

link = throw

link = Expression
d ass

link = cl ass

link = Path

|l ink = GenericParaneters
link = Obj ect

| i nk = Extends
link = Expression
Pat h

identifier

| i nk = Extension
Ext ensi on

link = dot
identifier

Ceneri cPar anet ers

link = | eftBracket
identifier

link = GenericParaneter
link = rightBracket

Ceneri cPar anet er
link = comma

identifier

Ext ends

li nk = extends
link = Path

hj ect

link = | eftParen

i nk = Conponent

mul tiple

mul tiple

mul tiple

mul tiple

mul tiple

mul tiple

mul tiple

mul tiple

mul tiple

nultiple

nult